
 DIGITAL NOTES 

ON 

DISTRIBUTED SYSTEMS 

[R20A0520] 

 
B.TECH III YEAR–I SEM  

2023-2024 
 

 

 

PREPARED BY 

B.RAMYA SRI 

V.V.NAGAMANI 

T.SRINIDHI 

 

 
DEPARTMENT OF INFORMATION TECHNOLOGY 

 

MALLA REDDY COLLEGE OF ENGINEERING 

& TECHNOLOGY 

(Autonomous Institution–UGC, Govt.of India) 

Recognized under2(f)and12(B)ofUGCACT1956 
(AffiliatedtoJNTUH,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015Certified) 

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India 
 
 



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

B.TECH-III -YEAR I-SEM-IT        L/T/P/C 

3/-/-/3 

Objectives: 

1. To learn the principles, architectures, algorithms and programming models used in distributed systems. 

2. To analyze the algorithms of mutual exclusion, election & multicast communication. 
3. To evaluate the different mechanisms for Interposes communication and remote invocations. 
4. To design and implement sample distributed systems. 
5. To apply transactions and concurrency control mechanisms in different distributed environments 

UNIT–I: 
Characterization of Distributed Systems: Introduction, Examples of Distributed systems, Resource Sharing 
and Web, Challenges. 
System Models: Introduction, Architectural models, Fundamental models 

UNIT-II 
Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing Physical clocks, 
Logical time and Logical clocks, Global states. 
Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast 
Communication, Consensus and Related problems. 

UNIT-III: 
Interprocess Communication: Introduction, Characteristics of Interprocess communication, External Data 
Representation and Marshalling, Client-Server Communication, Group Communication, Case Study: IPC in 
UNIX. 
Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects, 
Remote Procedure Call, Events and Notifications, Case study: Java RMI. 
UNIT–IV: 
Distributed File Systems: Introduction, File service Architecture, CaseStudy:1: Sun Network File System, 
CaseStudy2: The Andrew File System. 
Distributed Shared Memory: Introduction, Design and Implementation issues, Consistency Models. 
UNIT-V: 
Transactions and Concurrency Control: Introduction, Transactions, Nested Transactions, Locks, Optimistic 
concurrency control, Time stamp ordering, Comparison of methods for concurrency control. 
Distributed Transactions:  Introduction, Flat and Nested Distributed Transactions, Atomic Commit protocols, 
Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. 

TEXTBOOKS: 
1. Distributed Systems Concepts and Design, G Coulouris, J Dollimore and T Kindberg,Fourth Edition, 

Pearson Education.2009. 

REFERENCEBOOKS 
1. Distributed Systems, Principles and paradigms, AndrewS. Tanenbaum, Maarten Vanteen, 2nd Edition, PHI. 
2. Distributed Systems, An Algorithm Approach, Sikumar Ghosh, Chapman & Hall/CRC, Taylor & Fransis 
Group, 2007. 

COURSE OUTCOMES: 

 Able to compare different types of distributed systems and different models. 

 Able to analyze the algorithms of mutual exclusion, election & multi cast communication. 

 Able to evaluate the different mechanisms for Interprocess communication and remote invocations. 

 Able to design and develop new distributed applications. 

 Able to apply transactions and concurrency control mechanisms in different distributed environments. 
 
 
 
 
 



 

INDEX 
 
 
 

UNIT NO. TOPIC PAGENO 

 
I 

Characterization of Distributed Systems 1-7 

System Models 8-17 

 
II 

Time and Global States 18-24 

Co-ordination and Agreement 25-32 

 
III 

Inter Process Communication 33-36 

Distributed Objects and Remote Invocation 37-44 

 
IV 

Distributed File Systems 45-51 

Distributed Shared Memory 52-54 

 
V 

Transactions and Concurrency Control 55-64 

Distributed Transactions 65-74 

 
 
 
 
 
 
 



[DISTRIBUTED SYSTEMS] Page 1  

UNIT– I 

CHARACTERIZATION OF DISTRIBUTED SYSTEMS:INTRODUCTION 

 

Distributed System–is a system of hardware or software components located at networked 

computers which communicate and coordinate their actions by passing messages. 

 It is a collection of autonomous computers, connected through network and 

middleware. 

 Users perceive the system as a single integrated computed facility. 

 

Features of Centralized System: 

 

 One component with non-autonomous parts 

 

 Component shared by users all the time 

 

 All resources accessible 

 

 Software runs in a single process 

 

 Single Point of control 

 

 Single Point of failure 

 

Features of Distributed System: 

 

 Multiple autonomous components 

 

 Components are not shared by all users 

 

 Resources may not be accessible 

 

 Software runs in concurrent processes on different processors 

 

 Multiple Points of control 

 

 Multiple Points of failure 

 

Characteristics of Distributed System: 

 

1. Concurrency of components (concurrent program execution) 

 

2. Lack of a global clock(no single notion of time for all the systems) 

 

3. Independent failures of components(failure of one component does not affect 

others) 

 



[DISTRIBUTED SYSTEMS] Page 2  

 

 

Application of Distributed Systems: 

 Tele communication network(telephone n/w, cellular n/w, computer n/w) 

 Network Applications (WWW, online apps, n/w filesystems, banking systems ) 

 Real-time process control systems(aircraft control systems) 

 Parallel computation( grid computing, cluster computing) 

 

Examples of DS: 

 

1. INTERNET: It is a vast interconnected collection of heterogeneous computer networks. It is 

a very large distributed system which enables users to use services like WWW, email, file transfer 

etc. Services are open-ended. 

 

ISP: Internet service provider: companies that provide modem and other facilities to users and organizations 

which enable them to access services anywhere in the internet. 

Intranet– sub networks operated by companies and other organizations. 

 

Backbone links intranets. It is a link with high transmission capacity and employs satellite 

communication, fiber optics and other circuits. 

2. INTRANET: 

 

An Intranet is a portion of the Internet that is separately administered and has a boundary that 

can be configured to enforce local security policies. It is composed of several LAN’s linked by 

backbone connections. An Intranet is connected to the Internet via a router, which allows the users 

inside the intranet to make use of services. It also allows the users in other intranets to access its 

services. Firewall protects an Intranet by preventing unauthorized messages leaving or entering using 

filtering method. 

3. Mobile & Ubiquitous Computing: 

 

Technological advances in device miniaturization and wireless networking have led to the 

integration of small and portable computing devices into distributed systems (laptops, phones, PDS’s, 

wearable devices etc ) Mobile computing is the performance of computing tasks while the user is on 

the move. 

Ubiquitous computing is the harnessing of many small, cheap computational devices present 

in users environment. Devices become pervasive in everyday objects. 



[DISTRIBUTED SYSTEMS] Page 3  

ResourceSharing: 

 

• Resource sharing is the primary motivation of distributed computing 

 

• Resources types 

 

– Hardware ,e.g. printer, scanner, camera 

 

– Data sources, e.g. file, database, webpage 

 

– Specific resources, e.g. search engine 

 

• Service 

 

– Manages a collection of related resources and presents the functionalities to users 

and applications 

• Server 

 

– A process on networked computer that accepts requests from processes on other 

computers to perform a service and responds appropriately 

• Client 

 

– The requesting process 

 

• Communication is through message passing or Remote invocation 

 

Many distributed systems can be constructed in the form of interacting clients and servers. Ex: 

WWW, Email, Networked printers etc. 

Web Browser– client which communicates with web server to request web pages. 

 

World Wide Web: 

 

WWW is an evolving system for publishing and accessing resources and services across the Internet using 

web browsers. 

Web originated at European Centre for nuclear research, Switzerland in 1989.Documents exchanged 

contain  hyperlinks. 

Web is an open system. Its operation is based on communication standards and document 

standards. Initially web provided data resources but now includes services also. Web is based on three 

main standard technological components: 



[DISTRIBUTED SYSTEMS] Page 4  

1. HTML: hypert ext markup language for specifying contents and layouts of pages. 

2. URL:uniform resource locator which identifies documents and other resources stored 

as part of web. 

3. A client-server architecture with standard rules for interaction (HTTP) by which 

browsers and clients fetch documents and other resources from web servers. 

HTML: used to specify the text and images that make up the contents of a web page and to specify 

how they are laid out and formatted for presentation to the user. Web page contains headings, 

paragraphs, tables and images. HTML is also used to specify links and resources associated with 

them. HTML text is stored as a file in the web server which is retrieved and interpreted by the 

webbrowser.HTML directives–tags - <P> 

Ex: 

 

<IMG SRC= “http“> 

 

< P >WELCOME 

 

<AHREF=“http--------“> </A> 

 

< /P> 

 

URL: Its purpose is to identify resource. It has two top-level components: 

 

Scheme: Scheme-specific-identifier 

 

(typeof URL ie ftp, http) (specific info to be retrieved ie www.abc.net/-- 

.html)  HTTPURL’s are most widely used. 

 

Form ->http://servername[:port] [/path name]Ex:http://www.google.com/search?q=MRCET 

 

The simplest method of publishing a resource on the web is to place the corresponding file in a 

directory that the web server can access. 

HTTP: defines the ways in which browsers and other types of client interact with web servers. Features: 

Request-reply interactions, content types, one resource per request, simple access control. 

DynamicPages: A program that web servers run to generate content for their clients is referred to as a 

Common Gateway Interface (CGI) program. 

http://www.abc.net/--.html
http://www.abc.net/--.html
http://servername/
http://www.google.com/search?q=MRCET


[DISTRIBUTED SYSTEMS] Page 5  

XML –designedasawayofrepresentingdatainstandard,structured,application- specific forms. It is used 

to describe the capabilities of devices and to describe personal info held about users. The web of 

linked metadata resources is asemantic web. 

CHALLENGES: 

 

The challenges arising from the construction of distributed systems are: 

 

1. Heterogeneity of components: The Internet enables users to access services and run 

applications over a heterogeneous collection of computers and networks. Heterogeneity (that is, 

variety and difference)applies to all of the following: 

 networks; 

 

 computer hardware; 

 

 operating systems; 

 

 programming languages; 

 

 implementations by different developers 

 

Different programming languages use different representations for characters and data 

structures such as arrays and records. Heterogeneity can be handled in three ways: 

Middleware •The term middleware applies to a software layer that provides a programming 

abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating 

systems and programming languages. The Common Object Request Broker (CORBA), is an example. 

Heterogeneity and mobile code • The term mobile code is used to refer to program code that can be 

transferred from one computer to another and run at the destination– Java applets are an example. 

The virtual machine approach provides a way of making code executable on a variety of host 

computers: the compiler for a particular language generates code for a virtual machine instead of 

particular hardware order code. For example, the Java compiler produces code for a Java virtual 

machine, which executes it by interpretation. 

2. Openness 

 

The openness of a computer system is the characteristic that determines whether the system 

can be extended and re implemented in various ways. The openness of distributed 



[DISTRIBUTED SYSTEMS] Page 6  

 

 

 

 

systems is determined primarily by the degree to which new resource-sharing services can be added 

and be made available for use by a variety of client programs. 

• Open systems are characterized by the fact that their key interfaces are published. 

• Open distributed systems are based on the provision of a uniform communication 

mechanism and published interfaces for access to shared resources. 

• Open distributed systems can be constructed from heterogeneous hardware and 

software, possibly from different vendors. But the conformance of each component to 

the published standard must be carefully tested and verified if the system is to work 

correctly. 

3. Security 

 

Many of the information resources that are made available and maintained in distributed 

systems have a high intrinsic value to their     users. Security for information resources has three 

components: confidentiality (protection against disclosure to unauthorized individuals), integrity 

(protection against alteration or corruption), and availability (protection against interference with the 

means to access the resources). 

Challenge is not only to conceal the contents of a message but also to establish the identity of 

senderand receiver. Encryption techniques are used for this purpose. Two challenges not yet fully met 

are –denialofserviceattacksand securityofmobilecode. 

4. Scalability 

 

Distributed systems operate effectively and efficiently at many different scales, ranging from 

a small intranet to the Internet. A system is described as scalable if it will remain effective when 

there is a significant increase in the number of resources and the number of users. The design of 

scalable distributed systems presents the following challenges: 

Controlling the cost of physical resources. Controlling the performance 

lossPreventingsoftwareresourcesrunningoutAvoidingperformancebottlenecks 



[DISTRIBUTED SYSTEMS] Page 7  

5. Failure handling 

 

Computer systems sometimes fail. When faults occur in hardware or software, programs 

may produce incorrect results or may stop before they have completed the intended computation. 

Failures in a distributed system are partial– that is, some components fail while others continue to 

function. Therefore the handling of failures is particularly difficult. 

Detecting failures: Some failures can be detected. For example, checksums can be used to  detect 

corrupted data in a message or a file. 

Masking failures: Some failures that have been detected can be hidden or made less severe. Two 

examples of hiding failures: 

Messages can be retransmitted when they fail to arrive. 

 

File data can be written to a pair of disks so that 

if one is corrupted, the other will be there. 

Tolerating failures: For example, when a web browser cannot contact a web server, it does not make 

the user wait forever while it keeps on trying– it informs the user about the problem, leaving them 

free to try again later. 

Recovery from failures: Recovery involves the design of software so that the state of permanent data 

can be recovered or ‘rolled back’ after a server has crashed. 

Redundancy: Services can be made to tolerate failures by the use of redundant components. 

 

6. Concurrency 

 

Both services and applications provide resources that can be shared by clients in a distributed 

system. There is therefore a possibility that several clients will attempt to access a shared resource at 

the same time. Therefore services and applications generally allow multiple client requests to be 

processed concurrently. In this case processes should ensure correctness and consistency. Operations 

of objects should be synchronized using semaphores etc. 

7. Transparency 

 

Transparency is defined as the concealment from the user and the application programmer of 

the separation of components in a distributed system, so that the system is perceived as a whole rather 

than as a collection of independent components. The various forms of transparency are: 



[DISTRIBUTED SYSTEMS] Page 8  

Access transparency enables local and remote resources to be accessed using identical operations.  

Location transparency enables resources to be accessed without knowledge of their physical or network 

location (for example, which building or IP address). 

Concurrency transparency enable several processes to operate concurrently using shared resources without 

interference between them. 

Replication transparency enables multiple instances of resources to be used to increase 

reliability and performance without knowledge of the replicas by users or application 

programmers. 

Failure transparency enables the concealment of faults, allowing users and application programs to 

complete their tasks despite the failure of hardware or software components. 

Mobility transparency allows the movement of resources and clients within a system without 

affecting the operation of users or programs. 

Performance transparency allows the system to be reconfigured to improve performance as loads 

vary.  

Scaling transparency allows the system and applications to expand in scale without change to the 

system structure or the application algorithms. 

 

 

INTRODUCTION TO SYSTEM MODELS 

 

System Models specify the common properties and design issues for a distributed system. They 

describe the relevant aspects of DS design. 

Each type of model is intended to provide an abstract, simplified but consistent description of a 

relevant aspect of distributed system design: 

Physical models are the most explicit way in which to describe a system; they capture the hardware 

composition of a system in terms of the computers (and other devices, such as mobile phones) and their 

inter connecting networks. 

Architectural models describe a system in terms of the computational and communication          tasks 

performed by its computational elements; the computational elements being individual computers or 

aggregates of them supported by appropriate network inter connections. 

Fundamental models take an abstract perspective in order to examine individual aspects of a 

distributed system. The fundamental models that examine three important aspects of distributed 

systems: interaction models, which consider the structure and sequencing of the communication 

between the elements of the system; failure models, which consider the ways in which a system may 

fail to operate correctly and; security models, which consider how the system is protected against 

attempts to interfere with its correct operation or to steal its data. 



[DISTRIBUTED SYSTEMS] Page 9  

1. Architectural models 

 

Architecture models define the way in which the components of systems interact with one another and 

how they are mapped onto the network. The architecture of a system is its structure in terms of 

separately specified components and their interrelationships. The overall goal is to ensure that the 

structure will meet present and likely future demands on it. 

Software layers 

 

In a layered approach, a complex system is partitioned into a number of layers, with a given layer 

making use of the services offered by the layer below. In terms of distributed systems, this equates to 

a vertical organization of services into service layers. Given the complexity of distributed systems, it 

is often helpful to organize such services into layers. the important terms platform and middleware, 

which define as follows: 

A platform for distributed systems and applications consists of the lowest-level hardware and software 

layers. These low-level layers provide services to the layers above them, which are implemented 

independently in each computer, bringing the system’s programming interface up to a level that 

facilitates communication and coordination between processes. 

 

 

 

There are two main architectural models: 

 

1. Client-Server Model 

 

2. Peer-to-peer architecture 

 

Client-server: This is the architecture that is most often cited when distributed systems 

arediscussed.Itishistoricallythemostimportantandremainsthemostwidelyemployed.Serverisa process 

which accepts requests from other processes and Client is a process requesting  services from a 

server. 

Servers may in turn be clients of other servers, as the figure indicates. For example, a web server is 

often a client of a local file server that manages the files in which the web pages are stored. ses. 



[DISTRIBUTED SYSTEMS] Page 10  

Clients invoke individual servers 

 

 

 

 

Another web-related example concerns search engines, which enable users to look up summaries of 

information available on web pages at sites throughout the Internet. Thus a search engine is both a 

server and a client: it responds to queries from browser clients and it runs web crawlers that act as 

clients of other web servers. 

Peer-to-peer: In this architecture all of the processes involved in a task or activity play similar roles, 

interacting cooperatively as peers without any distinction between client and server processes or the 

computers on which they run. In practical terms, all participating processes run the same program and 

offer the same set of interfaces to each other. While the client-server model offers a direct and 

relatively simple approach to the sharing of data and other resources, it scales poorly. Enables 

hundreds of computers to provide access to resources they share and manage. Each object is 

replicated in several computers. Ex: Napster app for sharing digital music files. 



[DISTRIBUTED SYSTEMS] Page 11  

 
 

Several variations on the above models can be derived: 

 

1. Multiple-Servers Model: In this services are provided by multiple servers. Services can be 

implemented as several server processes in separate host computers. 

 

2. Web Proxy Server: It provides a shared cache of recently visited pages and web resources 

for the client machines at a site or across several sites. Purpose of proxy servers is to increase 

availability and performance of the service. 

3. Mobile Code: 

 

a) Client requests results in the downloading of applet code 

 

b) Applets are a well- known and widely used example of mobile code. It is downloaded 

from a web server  and executed locally resulting in good interactive response. 

4. Mobile Agent: 

 

A mobile agent is a running program that travels from one computer to another innetwork 

carry ing out a task on someone’s behalf 

5. Network Computers:  

Network computer  

Remote file server   

Client network 

OS and Files 

Network computer: 

Download sits OS and application software needed from a Remotefileserver Applications are run locally but 



[DISTRIBUTED SYSTEMS] Page 12  

the files are managed by the remote file server; low software management and maintenance cost. 

 

 

 

6. Thin Client: 

 

A software layer that supports a window based interface on a computer that is local to the user while 

executing application programs on a computer server 

Design requirements for distributed architectures: 

 

1. Performance Issues 

 

2. Quality of Service 

 

3. Use of cache and replication 

 

Performance Issues 

 

Responsiveness 

 

Delay, response time, slow down, stretch factor 

 

Determined by load and performance of the server and the network, and by delays in all software    

 components involved 

Throughput 

 

The rate at which computational work of the server or data transfer of the network is done 

 

Load balancing/ load sharing 

 

Enable applications and service processes to proceed concurrently and exploit the available resource 

 

3.  Fundamental Models 

 

Models of systems share some fundamental properties. In particular, all of them are composed of processes 

that communicate with one another by sending messages over a computer  network. 

The purpose of such a model is: 

• To make explicit all the relevant assumptions about the systems we are modelling. 

 

• To make generalizations concerning what is possible or impossible, given those assumptions. 

The aspects of distributed systems that we wish to capture in our fundamental models are intended to 

help us to discuss and reason about: 

Interaction: Computation occurs within processes; the processes interact by passing messages, 

resulting in communication (information flow) and coordination (synchronization and ordering of 

activities) between processes 

 



[DISTRIBUTED SYSTEMS] Page 13  

Failure: The correct operation of a distributed system is threatened whenever a fault occurs in any of 

the computers on which it runs (including software faults) or in the network that connects them. Our 

model defines and classifies the faults. 

Security: The modular nature of distributed systems and their openness exposes them to attack by 

both external and internal agents. Our security model defines and classifies the forms that such attacks 

may take, providing a basis for the analysis of threats to a system and for the design of systems that 

are able to resist them. 

There are three Fundamental Models: 

 

a) Interaction model 

 

Fundamentally distributed systems are composed of many processes, interacting in complex 

ways. For example: 

 Multiple server processes may cooperate with one another to provide a service; 

 

 A set of peer processes may cooperate with one another to achieve a common goal; 

Two significant factors affecting interacting processes in a distributed system: 

• Communication performance is often a limiting characteristic. 

 

• It is impossible to maintain a single global notion of time. 

 

Performance of communication channels•  Communication over a computer network has the following 

performance characteristics relating to latency, bandwidth and jitter: 

The delay between the start of a message’s transmission from one process and the 

beginning of its receipt by another is referred to as latency. The latency includes: 

– The time taken for the first of a string of bits transmitted through a network to reach 

Its  destination. For example, the latency for the transmission of a message through a satellite 

link is the time for a radio signals to travel to the satellite and back. 

• The bandwidth of a computer network is the total amount of information that can be 

transmitted over it in a given time. When a large number of communication channels 

are using the same network, they have to share the available bandwidth. 

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is relevant 

to multimedia data. For example, if consecutive samples of audio data are played with 

differing time intervals, the sound will be badly distorted. 

Computer clocks and timing events • Each computer in a distributed system has its own internal 

clock, which can be used by local processes to obtain the value of the current time. Therefore two 

processes running on different computers can each associate timestamps with their events. However, 

even if the two processes read their clocks at the same time, their local clocks may supply different 

time values. This is because computer clocks drift from perfect time and, more importantly, their drift 



[DISTRIBUTED SYSTEMS] Page 14  

rates differ from one another. The term clock drift rate refers to the rate at which a computer clock 

deviates from a perfect reference clock. Even if the clocks on all the computers in a distributed system 

are set to the same time initially, their clocks will eventually vary quite significantly unless corrections 

are applied. 

Clock Drift Rate 

 

Two variants of the interaction model • 

 

Synchronous distributed systems: has a strong assumption of time. Asynchronous distributed system 

is one in which the following bound are defined: 

• The time to execute each step of a process has known lower and upper bounds. 

 

• Each message transmitted over a channel is received within a known bounded time. 

 

• Each process has a local clock whose drift rate from real time has a known bound. 

Asynchronous distributed systems: makes no assumption of time. An asynchronous 

distributed system is one in which there are no bounds on: 

• Process execution speeds–for example, one process step may take only a Pico second 

and another a century; all that can be said is that each step may take an  arbitrarily 

long time. 

 

• Message transmission delays – for example, one message from process A to process B 

may be delivered in negligible time and another may take several years. In other words, 

a message may be received after an arbitrarily long time. 

• Clock drift rates–again; the drif trat of a clock is arbitrary. 

 

b) Failure model 

 

In a distributed system both processes and communication channels may fail – that is, they may depart 

from what is considered to be correct or desirable behavior. The failure model defines the ways in 

which failure may occur in order to provide an understanding of the effects of failures. We can have 

failures of processes and communication channels. These are presented under the headings omission 

failures, arbitrary failures and timing failures. 

Omission failures • The faults classified as omission failures refer to cases when a process or 

communication channel fails to perform actions that it’s supposed to do. 

Process omission failures: The chief omission failure of a process is to crash. When, say that process 

has crashed we mean that it has halted and will not execute any further steps of its program ever. 



[DISTRIBUTED SYSTEMS] Page 15  

 

 

In an asynchronous distributed system 

 

 A timeout means that a process is NOT responding; may have crashed or may be slow; 

or the message may not have arrived 

In a synchronous distributed system 

 

 A time out means that a process is crashed, so called fail-stop 

 

However, this method of crash detection relies on the use of timeouts – that is, a method in 

which one process allows a fixed period of time for something to occur. In an asynchronous system 

timeout can indicate only that a process is not responding – it may have crashed or may be slow, or the 

messages may not have arrived. 

Communication omission failures: Consider the communication primitives send and receive. 

 

Process p performs a send by inserting the message m in its outgoing message buffer. The 

communication channel transports m to q’s incoming message buffer. Process q performs a receive by 

taking m from its incoming message buffer and deliver in get. The outgoing and 

Incoming message buffer are typically provided by the operating system. 

 

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst possible 

failure semantics, in which any type of error may occur. For example, a process may set wrong values 

in its data items, or it may return a wrong value in response to an invocation. 

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps or takes 

unintended processing steps. 

Communication channels can suffer from arbitrary failures; for example, message contents maybe 

corrupted, nonexistent messages may be delivered or real messages may be delivered more than once. 

Timing failures • Timing failures are applicable in synchronous distributed systems where time limits 

are set on process execution time, message delivery time and clock drift rate. Timing 

Failures are listed in the following figure. Any one of these failures may result in responses being 

unavailable to clients within a specified time interval. 

Real-time operating systems are designed with a view to providing timing guarantees, but they are 

more complex to design and may require redundant hardware. 



[DISTRIBUTED SYSTEMS] Page 16  

c) Security model 

 

The security of a distributed system can be achieved by securing the processes and the channels used 

for their interactions and by protecting the objects that they encapsulate against unautho rized access. 

Protection is described in terms of objects; although the concepts apply equally well to resources fall 

types 

Protecting objects: 

 

Objects are intended to be used in different ways by different users. For example, some objects may 

hold a user’s private data, such as their mailbox, and other objects may hold shared data such as web 

pages. To support this, access rights specify who is allowed to perform the operations of an object–for 

example, who is allowed to read or to write its state. 

 

 

 

 

 

 

 

 
 

 

The enemy • To model security threats, we postulate an enemy (sometimes also known as the 

adversary) that is capable of sending any message to any process and reading or copying any message 

sent between a pair of processes, as shown in the following figure. The attack may 

Come from a computer that is legitimately connected to the network or from one that is connected      

in an unauthorized manner. The threats from a potential enemy include threats to processes and 

threats to communication channels. 

 

 

 



[DISTRIBUTED SYSTEMS] Page 17  

Defeating security threats 

 

Cryptography is the science of keeping messages secure, and encryption is the process of scrambling 

a message in such away as to hide its contents. Modern cryptography is based on 

Encryption algorithms that use secret keys–large numbers that are difficult to guess– to transform data 

in a manner that can only be reversed with knowledge of the corresponding decryption key. 

Authentication: The use of shared secrets and encryption provides the basis for the authentication of 

messages–proving the identities supplied by their senders. The basic authentication technique is to 

include in a message an encrypted portion that contains enough of the contents of the message to 

guarantee its authenticity. 

Secure channels: Encryption and authentication are used to build secure channels as a service 

layer on top of existing communication services. A secure channel is a communication channel 

connecting a pair of processes, each of which acts on behalf of a principal, as shown in the following 

figure. A secure channel has the following properties: 

• Each of the processes knows reliably the identity of the principal on whose behalf the 

other process is executing. 

• A secure channel ensures the privacy and integrity (protection against 

tampering) of the data transmitted across it. 

• Each message includes a physical or logical time stamp to prevent messages from 

being replayed or reordered. 

 

 



[DISTRIBUTED SYSTEMS] Page 18  

UNIT II 

 

Time and Global States 

 

There are two formal models of distributed systems: synchronous and asynchronous. 

Synchronous distributed systems have the following characteristics: 

 the time to execute each step of a process has known lower and upper bounds; 

 

 each message transmitted over a channel is received within a known bounded time; 

 Each process has a local clock whose drift rate from real time has a known bound. 

Asynchronous distributed systems, in contrast, guarantee no bounds on process execution speeds, 

message transmission delays, or clock drift rates. Most distributed systems we discuss, including the 

Internet, are asynchronous systems. 

Generally, timing is a challenging an important issue in building distributed systems. Consider a 

couple of examples: 

 Suppose we want to build a distributed system to track the battery usage of a bunch of 

laptop computers and we'd like to record the percentage of the battery each has 

remaining at exactly 2pm. 

 Suppose we want to build a distributed, real time auction and we want to know which 

of two bidders submitted their bid first. 

 Suppose we want to debug a distributed system and we want to know whether variable 

x1 in process p1 ever differs by more than 50 from variable x2 in process p2. 

In the first example, we would really like to synchronize the clocks of all participating computers and 

take a measurement of absolute time. In the second and third examples, knowing the absolute time is 

not as crucial as knowing the order in which events occurred. 

Clock Synchronization 

 

Every computer has a physical clock that counts oscillations of a crystal. This hardware clock is used 

by the computer's software clock to track the current time. However, the hardware clock is subject to 

drift -- the clock's frequency varies and the time becomes inaccurate. As a result, any two clocks are 

likely to be slightly different at any given time. The difference between two clocks is called their 

skew. 

There are several methods for synchronizing physical clocks. External 

synchronization means that all computers in the system are synchronized with an external source of 

time (e.g., a UTC signal). Internal synchronization means that all computers in the system are 

synchronized with one another, but the time is not necessarily accurate with respect to UTC. 



[DISTRIBUTED SYSTEMS] Page 19  

In a synchronous system, synchronization is straightforward since upper and lower bounds on the 

transmission time for a message are known. One process sends a message to another process 

indicating its current time, t. The second process sets its clock to t + (max+min)/2 where max and min 

are the upper and lower bounds for the message transmission time respectively. This guarantees that 

the skew is at most (max-min)/2. 

Cristian's method for synchronization in asynchronous systems is similar, but does not rely on a 

predetermined max and min transmission time. Instead, a process p1 requests the current time from 

another process p2 and measures the RTT (Tround) of the request/reply. 

Whenp1 receives the time t from p2 it sets its time to t + Tround/2. 

 

The Berkeley algorithm, developed for collections of computers running Berkeley UNIX, is an 

internal synchronization mechanism that works by electing a master to coordinate the 

synchronization. The master polls the other computers (called slaves) for their times, computes an 

average, and tells each computer by how much it should adjust its clock. 

The Network Time Protocol (NTP) is yet another method for synchronizing clocks that uses a 

hierarchical architecture where he top level of the hierarchy (stratum 1) are servers connected to a 

UTC time source. 

 

Logical Time 

 

Physical time cannot be perfectly synchronized. Logical time provides a mechanism to define the 

causal order in which events occur at different processes. The ordering is based on the following: 

 Two events occurring at the same process happen in the order in which they are 

observed by the process. 

 If a message is sent from one process to another, the sending of the message happened before 

the receiving of the message. 

 If e occurred before e' and e' occurred before e" then e occurred before e". 

 

"Lamport called the partial ordering obtained by generalizing these two relationships the 

happened-before relation." ( → ) 

 



[DISTRIBUTED SYSTEMS] Page 20  

 

 

 

In the figure, a → b and c → d . Also, b → c and d → f , which means that a → f . However, we 

cannot say that a → e or vice versa; we say that they are concurrent 

(a || e). 

 

A Lamport logical clock is a monotonically increasing software counter, whose value need bear no 

particular relationship to any physical clock. Each process pi keeps its own logical clock, Li, which 

it uses to apply so-called Lamport timestamps to events. 

 

Lamport clocks work as follows: 

 

LC1: Li is incremented before each event is issued at pi. LC2: 

When a process pi sends a message m, it piggybacks on m the value t = Li. 

 

On receiving (m, t), a process pj computes Lj: = max (Lj, t) and then applies LC1 before time 

stamping the event receive (m). 

An example is shown below: 

 



[DISTRIBUTED SYSTEMS] Page 21  

 

 

 

If e → e ' then L (e) < L (e'), but the converse is not true. Vector clocks address this problem. "A 

vector clock for a system of N processes is an array of N integers." Vector clocks are updated as 

follows: 

VC1: Initially, VI[j] = 0 for I, j = 1, 2, N 

 

VC2: Just before pi timestamps an event, it sets Vi[i]:=Vi[i]+1. VC3: 

pi includes the value t = Vi in every message it sends. 

VC4: When pi receives a timestamp t in a message, it sets Vi[j]:=max(Vi[j], t[j]), for 1, 2, 

...N. Taking the component wise maximum of two vector timestamps in this way is known as a merge 

operation. 



[DISTRIBUTED SYSTEMS] Page 22  

An example is shown below: 

 

 

 

 

 

Vector timestamps are compared as follows: 

 

V=V' iff V[j] = V'[j] for j = 1, 2, ..., N 

 

V <= V' iff V[j] <=V'[j] for j = 1, 2, ..., N V < 

V' iff V <= V' and V != V' 

If e → e ' then V(e) < V(e') and if V(e) < V(e') then e → e ' . 

 

Global States 

 

It is often desirable to determine whether a particular property is true of a distributed system as it 

executes. We'd like to use logical time to construct a global view of the system state and determine 

whether a particular property is true. A few examples are as follows: 

 Distributed garbage collection: Are there references to an object anywhere in the 

system? References may exist at the local process, at another process, or in the 

communication channel. 

 Distributed deadlock detection: Is there a cycle in the graph of the "waits for" 

relationship between processes? 

 Distributed termination detection: Has a distributed algorithm terminated? 



[DISTRIBUTED SYSTEMS] Page 23  

 Distributed debugging: Example: given two processes p1 and p2 with variables x1 and 

x2 respectively, can we determine whether the condition |x1-x2| > δ is ever true. 

In general, this problem is referred to as Global Predicate Evaluation. "A global state predicate is a 

function that maps from the set of global state of processes in the system ρ to 

{True, False}." 

 

 Safety - a predicate always evaluates to false. A given undesirable property (e.g., 

deadlock) never occurs. 

 Liveness - a predicate eventually evaluates to true. A given desirable property (e.g., 

termination) eventually occurs. 

Cuts 

 

Because physical time cannot be perfectly synchronized in a distributed system it is not possible to 

gather the global state of the system at a particular time. Cuts provide the ability to "assemble a 

meaningful global state from local states recorded at different times". 

Definitions: 

 

 ρ is a system of N processes pi (i = 1, 2, ..., N) 

 

 history(pi) = hi = < e i 0 , e i 1 ,...> 

 

 h i k =< e i 0 , e i 1 ,..., e i k > - a finite prefix of the process's history 

 

 s i k is the state of the process pi immediately before the kth event occurs 

 

 All processes record sending and receiving of messages. If a process pi records the 

sending of message m to process pj and pj has not recorded receipt of the message, 

then m is part of the state of the channel between pi and pj. 

 A global history of ρ is the union of the individual process histories: H = h0 𝖴 

h1 𝖴 h2 𝖴...𝖴hN-1 

 A global state can be formed by taking the set of states of the individual 

processes: S = (s1, s2, ..., sN) 

 A cut of the system's execution is a subset of its global history that is a union of 

prefixes of process histories (see figure below). 

 The frontier of the cut is the last state in each process. 



[DISTRIBUTED SYSTEMS] Page 24  

 A cut is consistent if, for all events e and e': 

 

o ( e ∈ C and e ' → e ) ⇒ e ' ∈ C 

 

 A consistent global state is one that corresponds to a consistent cut. 

 

 

 

 

Distributed Debugging 

 

To further examine how you might produce consistent cuts, we'll use the distributed debugging 

example. Recall that we have several processes, each with a variable xi. "The safety condition required 

in this example is |xi-xj| <= δ (i, j = 1, 2, ..., N)." 

The algorithm we'll discuss is a centralized algorithm that determines post hoc whether the safety 

condition was ever violated. The processes in the system, p1, p2, ..., pN, send their states to a passive 

monitoring process, p0. p0 is not part of the system. Based on the states collected, p0 can evaluate the 

safety condition. 

Collecting the state: The processes send their initial state to a monitoring process and send updates 

whenever relevant state changes, in this case the variable xi. In addition, the processes need only send 

the value of xi and a vector timestamp. The monitoring process maintains an ordered queue (by the 

vector timestamps) for each process where it stores the state messages. It can then create consistent 

global states which it uses to evaluate the safety condition. 



[DISTRIBUTED SYSTEMS] Page 25  

Let S = (s1, s2, ..., SN) be a global state drawn from the state messages that the monitor process has 

received. Let V(si) be the vector timestamp of the state si received from pi. Then it can be shown that 

S is a consistent global state if and only if: 

V(si)[i] >= V(sj)[i] for i, j = 1, 2, ..., N 

 

 

 

 

Coordination and Agreement 

 

Overview 

 

We start by addressing the question of why process need to coordinate their actions and agree on 

values in various scenarios. 

1. Consider a mission critical application that requires several computers to communicate 

and decide whether to proceed with or abort a mission. Clearly, all must come to 

agreement about the fate of the mission. 

2. Consider the Berkeley algorithm for time synchronization. One of the participate 

computers serves as the coordinator. Suppose that coordinator fails. The remaining 

computers must elect a new coordinator. 

3. Broadcast networks like Ethernet and wireless must agree on which nodes can send at 

any given time. If they do not agree, the result is a collision and no message is 

transmitted successfully. 



[DISTRIBUTED SYSTEMS] Page 26  

4. Like other broadcast networks, sensor networks face the challenging of agreeing which 

nodes will send at any given time. In addition, many sensor network algorithms require 

that nodes elect coordinators that take on a server-like responsibility. Choosing these 

nodes is particularly challenging in sensor networks because of the battery constraints 

of the nodes. 

5. Many applications, such as banking, require that nodes coordinate their access of a 

shared resource. For example, a bank balance should only be accessed and updated by 

one computer at a time. 

Failure Assumptions and Detection 

 

Coordination in a synchronous system with no failures is comparatively easy. We'll look at some 

algorithms targeted toward this environment. However, if a system is asynchronous, meaning that 

messages may be delayed an indefinite amount of time, or failures may occur, then coordination and 

agreement become much more challenging. 

A correct process "is one that exhibits no failures at any point in the execution under consideration." 

If a process fails, it can fail in one of two ways: a crash failure or a byzantine failure. A crash failure 

implies that a node stops working and does not respond to any messages. A byzantine failure implies 

that a node exhibits arbitrary behavior. For example, it may continue to function but send incorrect 

values. 

Failure Detection 

 

One possible algorithm for detecting failures is as follows: 

 

 Every t seconds, each process sends an "I am alive" message to all other 

processes. 

 Process p knows that process q is either unsuspected, suspected, or failed. 

 

 If p sees q's message, it sets q's status to unsuspected. 

 

This seems ok if there are no failures. What happens if a failure occurs? In this case, q will not send a 

message. In a synchronous system, p waits for d seconds (where d is the maximum delay in message 

delivery) and if it does not hear from q then it knows that q has failed. In an asynchronous system, q 

can be suspected of failure after a timeout, but there is no guarantee that a failure has occurred. 



[DISTRIBUTED SYSTEMS] Page 27  

Mutual Exclusion 

 

The first set of coordination algorithms we'll consider deal with mutual exclusion. How can we ensure 

that two (or more) processes do not access a shared resource simultaneously? This problem comes up 

in the OS domain and is addressed by negotiating with shared objects (locks). In a distributed system, 

nodes must negotiate via message passing. 

Each of the following algorithms attempts to ensure the following: 

 

 Safety: At most one process may execute in the critical section (CS) at a time. 

 

 Liveness: Requests to enter and exit the critical section eventually succeed. 

 

 Causal ordering: If one request to enter the CS happened-before another, then entry 

to the CS is granted in that order. 

Central Server 

 

The first algorithm uses a central server to manage access to the shared resource. To enter a critical 

section, a process sends a request to the server. The server behaves as follows: 

 If no one is in a critical section, the server returns a token. When the process exits 

the critical section, the token is returned to the server. 

 If someone already has the token, the request is queued. 

 

Requests are serviced in FIFO order. 

 

If no failures occur, this algorithm ensures safety and liveness. However, ordering is not 

preserved (why?). The central server is also a bottleneck and a single point of failure. 

Token Ring 

 

The token ring algorithm arranges processes in a logical ring. A token is passed clockwise around the 

ring. When a process receives the token it can enter its critical section. If it does not need to enter a 

critical section, it immediately passes the token to the next process. 

This algorithm also achieves safety and liveness, but not ordering, in the case when no failures occur. 

However, a significant amount of bandwidth is used because the token is passed continuously even 

when no process needs to enter a CS. 



[DISTRIBUTED SYSTEMS] Page 28  

Multicast and Logical Clocks 

 

Each process has a unique identifier and maintains a logical clock. A process can be in one of three 

states: released, waiting, or held. When a process wants to enter a CS it does the following: 

 sets its state to waiting 

 

 sends a message to all other processes containing its ID and timestamp 

 

 once all other processes respond, it can enter the CS 

 

When a message is received from another process, it does the following: 

 

 if the receiver process state is held, the message is queued 

 

 if the receiver process state is waiting and the timestamp of the message is after the 

local timestamp, the message is queued (if the timestamps are the same, the process ID 

is used to order messages) 

 else - reply immediately 

 

When a process exits a CS, it does the following: 

 

 sets its state to released 

 

 replies to queued requests 

 

 



[DISTRIBUTED SYSTEMS] Page 29  

This algorithm provides safety, liveness, and ordering. However, it cannot deal with failure and has 

problems of scale. 

None of the algorithms discussed are appropriate for a system in which failures may occur. In order to 

handle this situation, we would need to first detect that a failure has occurred and then reorganize the 

processes (e.g., form a new token ring) and reinitialize appropriate state (e.g., create a new token). 

Election 

 

An election algorithm determines which process will play the role of coordinator or server. All 

processes need to agree on the selected process. Any process can start an election, for example if it 

notices that the previous coordinator has failed. The requirements of an election algorithm are as 

follows: 

 Safety: Only one process is chosen -- the one with the largest identifying value. The 

value could be load, uptime, a random number, etc. 

 Liveness: All process eventually chooses a winner or crash. 

 

Ring-based 

 

Processes are arranged in a logical ring. A process starts an election by placing its ID and value in 

a message and sending the message to its neighbor. When a message is received, a process does the 

following: 

 If the value is greater that its own, it saves the ID and forwards the value to its 

neighbor. 

 Else if its own value is greater and then it has not yet participated in the election, it 

replaces the ID with its own, the value with its own, and forwards the message. 

 Else if it has already participated it discards the message. 

 

 If a process receives its own ID and value, it knows it has been elected. It then sends 

an elected message to its neighbor. 

 When an elected message is received, it is forwarded to the next neighbor. 



[DISTRIBUTED SYSTEMS] Page 30  

 

 
 

Safety is guaranteed - only one value can be largest and make it all the way through the ring. Liveness 

is guaranteed if there are no failures. However, the algorithm does not work if there are failures. 

Bully 

 

The bully algorithm can deal with crash failures, but not communication failures. When a process 

notices that the coordinator has failed, it sends an election message to all higher- numbered processes. 

If no one replies, it declares itself the coordinator and sends a new coordinator message to all 

processes. If someone replies, it does nothing else. When a process receives an election message from 

a lower-numbered process it returns a reply and starts an election. This algorithm guarantees safety 

and liveness and can deal with crash failures. 



[DISTRIBUTED SYSTEMS] Page 31  

 

 
 

Consensus 

 

All of the previous algorithms are examples of the consensus problem: how can we get all 

processes to agree on a state? Here, we look at when the consensus problem is solvable. 

The system model considers a collection of processes pi (i = 1, 2, ..., N). Communication is reliable, but 

processes may fail. Failures may be crash failures or byzantine failures. 

The goals of consensus are as follows: 

 

 Termination: Every correct process eventually decides on a value. 

 

 Agreement: All processes agree on a value. 

 

 Integrity: If all correct processes propose the same value, that value is the one selected. 

We consider the Byzantine Generals problem. A set of generals must agree on whether to attack or 

retreat. Commanders can be treacherous (faulty). This is similar to consensus, but differs in that a 

single process proposes a value that the others must agree on. The requirements are: 



[DISTRIBUTED SYSTEMS] Page 32  

 Termination: All correct processes eventually decide on a value. 

 

 Agreement: All correct processes agree on a value. 

 

 Integrity: If the commander is correct, all correct processes agree on what the 

commander proposed. 

If communication is unreliable, consensus is impossible. Remember the blue army discussion 

from the second lecture period. With reliable communication, we can solve consensus in a 

synchronous system with crash failures. 

We can solve Byzantine Generals in a synchronous system as long as less than 1/3 of the 

processes fail. The commander sends the command to all of the generals and each general sends the 

command to all other generals. If each correct process chooses the majority of all commands, the 

requirements are met. Note that the requirements do not specify that the processes must detect that the 

commander is fault. 

It is impossible to guarantee consensus in an asynchronous system, even in the presence of 1 

crash failure. That means that we can design systems that reach consensus most of the time, but cannot 

guarantee that they will reach consensus every time. Techniques for reaching consensus in an 

asynchronous system include the following: 

 Masking faults - Hide failures by using persistent storage to store state and 

restarting processes when they crash. 

 Failure detectors - Treat an unresponsive process (that may still be alive) as failed. 

 Randomization - Use randomized behavior to confuse byzantine processes. 



[DISTRIBUTED SYSTEMS] Page 33  

UNIT-III 
 

 

INTER PROCESS COMMUNICATION: 

 

Introduction: 

 

Inter process Communication is a process of exchanging the data between two or more independent 

process in a distributed environment is called as Inter process communication. Inter process communication 

on the internet provides both Datagram and stream communication. 

 

Characteristics of Inter Process Communication: 

 

Synchronous System Calls: 

In the synchronous system calls both sender and receiver use blocking system calls to transmit the data which 

means the sender will wait until the acknowledgment is received from the receiver and receiver waits until the 

message arrives. 

 

Asynchronous System Calls: 

In the asynchronous system calls, both sender and receiver use non-blocking system calls to transmit the data 

which means the sender doesn’t wait from the receiver acknowledgment. 

 

Message Destination: 
A local port is a message destination within a computer, specified as an integer. Aport has exactly one 

receiver but many senders. Processes may use multiple ports from which to receive messages. Any process 

that knows the number of a port can send the message to it. 

Reliability: 

It is defined as validity and integrity. 

 

Integrity: 

Messages must arrive without corruption and duplication to the destination. 

 

Validity: 

Point to point message services are defined as reliable, If the messages are guaranteed to be delivered without 

being lost is called validity. 

 

Ordering: 

It is the process of delivering messages to the receiver in a particular order. Some applications require 

messages to be delivered in the sender order i.e the order in which they were transmitted by the sender. 

The information consists of a sequence of bytes in messages that are moving between components in a 

distributed system.  So, conversion is required from the data structure to a sequence of bytes before the 

transmission of data. On the arrival of the message, data should also be able to be converted back into its 

original data structure. 

 

Different types of data are handled in computers, and these types are not the same in every position where 

data must be transmitted. Individual primitive data items can have a variety of data values, and not all 

computers store primitive values like integers in the same order. Different architectures also represent 

floating-point numbers differently. Integers are ordered in two ways, big-endian order, in which the Most 

Significant Byte (MSB) is placed first, and little-endian order, in which the Most Significant Byte (MSB) is 

placed last or the Least Significant Byte (LSB) is placed first. Furthermore, one more issue is the set of codes 

used to represent characters. Most applications on UNIX systems use ASCII character coding, which uses one 

byte per character, whereas the Unicode standard uses two bytes per character and allows for the 

representation of texts in many different languages. 

 



[DISTRIBUTED SYSTEMS] Page 34  

 

Marshalling: Marshalling is the process of transferring and formatting a collection of data structures 

into an external data representation type appropriate for transmission in a message. 

Unmarshalling: The converse of this process is unmarshalling, which involves reformatting the 

transferred data upon arrival to recreate the original data structures at the destination. 

 

Approaches: 

  

There are three ways to successfully communicate between various sorts of data between computers. 

 

1. Common Object Request Broker Architecture (CORBA):  

  

CORBA  is a specification defined by the Object Management Group (OMG) that is currently the most 

widely used middleware in most distributed systems.  It allows systems with diverse architectures, operating 

systems, programming languages, and computer hardware to work together. It allows software applications 

and their objects to communicate with one another.  It is a standard for creating and using distributed objects. 

Data Representation in CORBA: 

Common Data Representation (CDR) is used to describe structured or primitive data types that are supplied as 

arguments or results during remote invocations on CORBA distributed objects. It allows clients and servers’ 

built-in computer languages to communicate with one another. To exemplify, it converts little-endian to big-

endian. 

There are 15 primitive types: short (16-bit), long (32-bit), unsigned short, unsigned long, float (32-bit), double 

(64-bit), char, boolean (TRUE, FALSE), octet (8-bit), and any (which can represent any basic or constructed 

type), as well as a variety of composite types. 

CORBA CDR Constructed Types: 

Let’s have a look at Types with their representation: 

sequence: It refers to length (unsigned long) to be followed by elements in order 

string: It refers to length (unsigned long) followed by characters in order (can also have wide characters) 

array: The elements of the array follow order and length is fixed so not specified. 

struct: in the order of declaration of components 

enumerated: It is unsigned long and here, the values are specified by the order declared. 

union: type tag followed by the selected member 

     
Marshalling CORBA: 

From the specification of the categories of data items to be transmitted in a message, Marshalling CORBA 

operations can be produced automatically. CORBA IDL describes the types of data structures and 

fundamental data items and provides a language/notation for specifying the types of arguments and results of 

RMI methods. 

 

 

 



[DISTRIBUTED SYSTEMS] Page 35  

 

2. Java’s Object Serialization: 

Java Remote Method Invocation (RMI) allows you to pass both objects and primitive data values as 

arguments and method calls. In Java, the term serialization refers to the activity of putting an object (an 

instance of a class) or a  set of related objects into a serial format suitable for saving to disk or sending in a 

message. 

Java provides a mechanism called object serialization. This allows an object to be represented as a sequence 

of bytes containing information about the object’s data and the type of object and the type of data stored in the 

object.  After the serialized object is written to the file, it can be read from the file and deserialized. You can 

recreate an object in memory with type information and bytes that represent the object and its data. 

Moreover, objects can be serialized on one platform and deserialized on completely different platforms as the 

whole process is JVM independent. 

 
 

 
 

3. Extensible Markup Language (XML): 

Clients communicate with web services using XML, which is also used to define the interfaces and other 

aspects of web services. However, XML is utilized in a variety of different applications, including archiving 

and retrieval systems; while an XML archive is larger than a binary archive, it has the advantage of being 

readable on any machine. Other XML applications include the design of user interfaces and the encoding of 

operating system configuration files. 

In contrast to HTML, which employs a fixed set of tags, XML is extensible in the sense that users can 

construct their tags. If an XML document is meant to be utilized by several applications, the tag names must 

be unique. 

Clients, for example, typically interface with web servers via SOAP messages. SOAP is an XML standard 

with tags that web services and their customers can utilize. Because it is expected that the client and server 

sharing a message have prior knowledge of the order and types of information it contains, some external data 

representations (such as CORBA CDR) do not need to be self-describing. On the other hand, XML was 



[DISTRIBUTED SYSTEMS] Page 36  

designed to be utilized by a variety of applications for a variety of reasons. This has been made possible by 

the inclusion of tags and the usage of namespaces to specify the meaning of the tags. Furthermore, the usage 

of tags allows applications to pick only the portions of a document that they need to process. 

Usage: 

Marshalling is used to create various remote procedure call (RPC) protocols, where separate processes and 

threads often have distinct data formats, necessitating the need for marshalling between them. 

To transmit data across COM object boundaries, the Microsoft Component Object Model (COM) interface 

pointers employ marshalling. When a common-language-runtime-based type has to connect with other 

unmanaged types via marshalling, the same thing happens in the.NET framework. DCOM stands for 

Distributed Component Object Model. 

Scripts and applications based on the Cross-Platform Component Object Model (XPCOM) technology are 

two further examples where marshalling is crucial. The Mozilla Application Framework makes heavy use of 

XPCOM, which makes considerable use of marshalling. 

So, XML (Extensible Markup Language) is a text-based format for expressing structured data. It was 

designed to represent data sent in messages exchanged by clients and servers in web services 

The primitive data types are marshalled into a binary form in the first two ways- CORBA and Java’s object 

serialization. The primitive data types are expressed textually in the third technique (XML). A data value’s 

textual representation will typically be longer than its binary representation. The HTTP protocol is another 

example of the textual approach. 

On the other hand, type information is included in both Java serialization and XML, but in distinct ways. 

Although Java serializes all of the essential type information, XML documents can refer to namespaces, 

which are externally specified groups of names (with types). 

 
 

 

CASE STUDY : IPC IN UNIX 

 

Pipes are a simple synchronized way of passing information between two processes. A pipe can be viewed as 

a special file that can store only a limited amount of data and uses a FIFO access scheme to retrieve data. In a 

logical view of a pipe, data is written to one end and read from the other. The processes on the ends of a pipe 

have no easy way to identify what process is on the other end of the pipe. The system provides 

synchronization between the reading and writing process. It also solves the producer/consumer problem: 

writing to a full pipe automatically blocks, as does reading from an empty pipe. The system also assures that 

there are processes on both ends of the pipe at all time. The programmer is still responsible, however, for 

preventing deadlock between processes.  

 



[DISTRIBUTED SYSTEMS] Page 37  

Pipes come in two varieties: · Unnamed. Unnamed pipes can only be used by related processes (i.e. a process 

and one of its child processes, or two of its children). Unnamed pipes cease to exist after the processes are 

done using them. · Named. Named pipes exist as directory entries, complete with permissions. This means 

that they are persistent and that unrelated processes can use them. 2.1 UNIX Most UNIX systems limit pipes 

to 5120K (typically ten 512K chunks). The unbuffered system call write() is used to add data to a pipe. 

Write() takes a file descriptor (which can refer to the pipe), a buffer containing the data to be written, and the 

size of the buffer as parameters. The system assures that no interleaving will occur between writes, even if the 

pipeline fills temporarily. To get data from a pipe, the read() system call is used. Read() functions on pipes 

much the same as it functions on files.  

 

However, seeking is not supported and it will block until there is data to be read. The pipe() system call is 

used to create unnamed pipes in UNIX. This call returns two pipes. Both support bidirectional communication 

(two pipes are returned for historical reasons: at one time pipes were unidirectional so two pipes were needed 

for bidirectional communication). In a full duplex environment (i.e. one that supports bidirectional pipes) each 

process reads from one pipe and writes to the other; in a half-duplex (i.e. unidirectional) setting, the first file 

descriptor is always used for reading and the second for writing. Pipes are commonly used on the UNIX 

command line to send the output of one process to another process as input. When a pipe is used both 

processes run concurrently and there is no guarantee as to the sequence in which each process will be allowed 

to run. However, since the system manages the producer/consumer issue, both proceed per usual, and the 

system provides automatic blocking as required.  

 

Using unnamed pipes in a UNIX environment normally involves several steps: · Create the pipe(s) needed · 

Generate the child processes · Close/duplicate the file descriptors to associate the ends of the pipe · Close the 

unused end(s) of the pipe(s) · Perform the communication · Close the remaining file descriptors · Wait for the 

child process to terminate To simplify this process, UNIX provides two system calls that handle this 

procedure. The call popen() returns a pointer to a file after accepting a shell command to be executed as input. 

Also given as input is a type flag that determines how the returned file descriptor will be used. The popen() 

call automatically generates a child process, which exec()s a shell and runs the indicated command. 

Depending on the flag passed in, this command could have either read or write access to the file. The pclose() 

call is used to close the data stream opened with popen(). It takes the file descriptor returned by popen() as its 

only parameter.  

 

Named pipes can be created on the UNIX command line using mknod, but it is more interesting to look at 

how they can be used programmatically. The mknod() system call, usable only by the superuser, takes a path, 

access permissions, and a device (typically unused) as parameters and creates a pipe referred to by the user-

specified path. Often, mkfifo() will be provided as an additional call that can be used by all users but is only 

capable of making FIFO pipes. 

 

Distributed Objects & Remote Invocation : 

A distributed object is an object that can be accessed remotely. This means that a distributed object can be 

used like a regular object, but from anywhere on the network. 

 

Communication between Distributed Objects: 

• Stub and skeleton objects works as communication objects in distributed system. 

• The stub acts as a gateway for client side objects and all outgoing requests from client side to the 

server-side objects. 

• The skeleton acts as the gateway for server side objects & for all incoming clients requests. 

• The skeleton wraps or binds server/called object functionality & exposes it to the clients; moreover by 

adding the network logic ensures the reliable communication channel between clients & server. 

 



[DISTRIBUTED SYSTEMS] Page 38  

 

 

 

 

 

 

RPC (Remote Procedure Call) 

 

 

 
 

Step 1) The client, the client stub, and one instance of RPC run time execute on the client machine. 

Step 2) A client starts a client stub process by passing parameters in the usual way. The client stub stores 

within the client’s own address space. It also asks the local RPC Runtime to send back to the server stub. 

Step 3) In this stage, RPC accessed by the user by making regular Local Procedural Cal. RPC Runtime 

manages the transmission of messages between the network across client and server. It also performs the job 

of retransmission, acknowledgment, routing, and encryption. 

Step 4) After completing the server procedure, it returns to the server stub, which packs (marshalls) the return 

values into a message. The server stub then sends a message back to the transport layer. 

Step 5) In this step, the transport layer sends back the result message to the client transport layer, which 

returns back a message to the client stub. 



[DISTRIBUTED SYSTEMS] Page 39  

Step 6) In this stage, the client stub demarshalls (unpack) the return parameters, in the resulting packet, and 

the execution process returns to the caller. 

Advantages of RPC: 

 RPC method helps clients to communicate with servers by the conventional use of procedure calls in 

high-level languages. 

 RPC method is modeled on the local procedure call, but the called procedure is most likely to be 

executed in a different process and usually a different computer. 

 RPC supports process and thread-oriented models. 

 RPC makes the internal message passing mechanism hidden from the user. 

 The effort needs to re-write and re-develop the code is minimum. 

 Remote procedure calls can be used for the purpose of distributed and the local environment. 

 It commits many of the protocol layers to improve performance. 

 RPC provides abstraction. For example, the message-passing nature of network communication 

remains hidden from the user. 

 RPC allows the usage of the applications in a distributed environment that is not only in the local 

environment. 

 With RPC code, re-writing and re-developing effort is minimized. 

 Process-oriented and thread-oriented models support by RPC. 

Disadvantages of RPC 

 Remote Procedure Call Passes Parameters by values only and pointer values, which is not allowed. 

 Remote procedure calling (and return) time (i.e., overheads) can be significantly lower than that for a 

local procedure. 

 This mechanism is highly vulnerable to failure as it involves a communication system, another 

machine, and another process. 

 RPC concept can be implemented in different ways, which is can’t standard. 

 Not offers any flexibility in RPC for hardware architecture as It is mostly interaction-based. 

 The cost of the process is increased because of a remote procedure call. 

RMI (REMOTE METHOD INVOCATION) 

 

Remote Method Invocation (RMI) is an API that allows an object to invoke a method on an object that exists 

in another address space, which could be on the same machine or on a remote machine. Through RMI, an 

object running in a JVM present on a computer (Client-side) can invoke methods on an object present in 

another JVM (Server-side). RMI creates a public remote server object that enables client and server-side 

communications through simple method calls on the server object. 

 
 

 

 



[DISTRIBUTED SYSTEMS] Page 40  

Stub Object: The stub object on the client machine builds an information block and sends this information to 

the server. 

The block consists of 

An identifier of the remote object to be used 

Method name which is to be invoked 

Parameters to the remote JVM 

Skeleton Object: The skeleton object passes the request from the stub object to the remote object. It performs 

the following tasks 

It calls the desired method on the real object present on the server. 

It forwards the parameters received from the stub object to the method. 

 

Working of an RMI Application 

The following are the points on how an RMI application works − 

 When the client makes a call to the remote object, it is received by the stub which eventually passes 

this request to the RRL. 

 When the client-side RRL receives the request, it invokes a method called invoke() of the 

object remote Ref. It passes the request to the RRL on the server side. 

 The RRL on the server side passes the request to the Skeleton (proxy on the server) which finally 

invokes the required object on the server. 

 The result is passed all the way back to the client. 

 

Advantages of RMI: 

 

Object Oriented: RMI can pass full objects as arguments and return values, not just predefined data types. 

This means that you can pass complex types, such as a standard Java hashtable object, as a single argument. 

In existing RPC systems you would have to have the client decompose such an object into primitive data 

types, ship those data types, and the recreate a hashtable on the server. RMI lets you ship objects directly 

across the wire with no extra client code. 

 

Mobile Behavior: RMI can move behavior (class implementations) from client to server and server to client. 

For example, you can define an interface for examining employee expense reports to see whether they 

conform to current company policy. When an expense report is created, an object that implements that 

interface can be fetched by the client from the server. When the policies change, the server will start returning 

a different implementation of that interface that uses the new policies. The constraints will therefore be 

checked on the client side-providing faster feedback to the user and less load on the server-without installing 

any new software on user's system. This gives you maximal flexibility, since changing policies requires you 

to write only one new Java class and install it once on the server host. 

 

Design Patterns: Passing objects lets you use the full power of object oriented technology in distributed 

computing, such as two- and three-tier systems. When you can pass behavior, you can use object oriented 

design patterns in your solutions. All object oriented design patterns rely upon different behaviors for their 

power; without passing complete objects-both implementations and type-the benefits provided by the design 

patterns movement are lost. 

 

Safe and Secure: RMI uses built-in Java security mechanisms that allow your system to be safe when users 

downloading implementations. RMI uses the security manager defined to protect systems from hostile applets 

to protect your systems and network from potentially hostile downloaded code. In severe cases, a server can 

refuse to download any implementations at all. 

 

 

 

 

 

 



[DISTRIBUTED SYSTEMS] Page 41  

 

Easy to Write/Easy to Use: RMI makes it simple to write remote Java servers and Java clients that access 

those servers. A remote interface is an actual Java interface. A server has roughly three lines of code to 

declare itself a server, and otherwise is like any other Java object. This simplicity makes it easy to write 

servers for full-scale distributed object systems quickly, and to rapidly bring up prototypes and early versions 

of software for testing and evaluation. And because RMI programs are easy to write they are also easy to 

maintain. 

 

Connects to Existing/Legacy Systems: RMI interacts with existing systems through Java's native method 

interface JNI. Using RMI and JNI you can write your client in Java and use your existing server 

implementation. When you use RMI/JNI to connect to existing servers you can rewrite any parts of you server 

in Java when you choose to, and get the full benefits of Java in the new code. Similarly, RMI interacts with 

existing relational databases using JDBC without modifying existing non-Java source that uses the databases. 

Write Once, Run Anywhere: RMI is part of Java's "Write Once, Run Anywhere" approach. Any RMI based 

system is 100% portable to any Java Virtual Machine *, as is an RMI/JDBC system. If you use RMI/JNI to 

interact with an existing system, the code written using JNI will compile and run with any Java virtual 

machine. 

 

Distributed Garbage Collection: RMI uses its distributed garbage collection feature to collect remote server 

objects that are no longer referenced by any clients in the network. Analogous to garbage collection inside a 

Java Virtual Machine, distributed garbage collection lets you define server objects as needed, knowing that 

they will be removed when they no longer need to be accessible by clients. 

Parallel Computing: RMI is multi-threaded, allowing your servers to exploit Java threads for better concurrent 

processing of client requests. 

The Java Distributed Computing Solution: RMI is part of the core Java platform starting with JDK?? 1.1, so it 

exists on every 1.1 Java Virtual Machine. All RMI systems talk the same public protocol, so all Java systems 

can talk to each other directly, without any protocol translation overhead. 

 

CASE STUDY JAVA RMI:- 

These are the steps to  follow  − 

 Define the remote interface 

 Develop the implementation class (remote object) 

 Develop the server program 

 Develop the client program 

 Compile the application 

 Execute the application 

 

 

Remote interfaces in Java RMI • Remote interfaces are defined by extending an interface called Remote 

provided in the java.rmi package. The methods must throw RemoteException, but application-specific 

exceptions may also be thrown. Figure 5.16 shows an example of two remote interfaces called Shape and 

ShapeList. In this example, GraphicalObject is a class that holds the state of a graphical object – for example, 

its type, its position, enclosing rectangle, line colour and fill colour – and provides operations for accessing 

and updating its state. GraphicalObject must implement the Serializable interface. Consider the interface 

Shape first: the getVersion method returns an integer, whereas the getAllState method returns an instance of 

the class GraphicalObject. Now consider the interface ShapeList: its newShape method passes an 

instance of GraphicalObject as its argument but returns an object with a remote. 



[DISTRIBUTED SYSTEMS] Page 42  

 

 
Downloading of classes • Java is designed to allow classes to be downloaded from one virtual machine to 

another. This is particularly relevant to distributed objects that communicate by means of remote invocation. 

We have seen that non-remote objects are passed by value and remote objects are passed by reference as 

arguments and results of RMIs. If the recipient does not already possess the class of an object passed by 

value, its code is downloaded automatically. Similarly, if the recipient of a remote object reference does not 

already possess the class for a proxy, its code is downloaded automatically. This has two advantages: 

1. There is no need for every user to keep the same set of classes in their working environment. 

2. Both client and server programs can make transparent use of instances of new classes whenever they are 

added. 

As an example, consider the whiteboard program and suppose that its initial implementation of 

GraphicalObject does not allow for text. A client with a textual object can implement a subclass of 

GraphicalObject that deals with text and pass an instance to the server as an argument of the newShape 

method. After that, other clients may retrieve the instance using the getAllState method. The code of the new 

class will be downloaded automatically from the first client to the server and then to other clients 

as needed. 



[DISTRIBUTED SYSTEMS] Page 43  

 

 
 

 

 

 

 

 

 



[DISTRIBUTED SYSTEMS] Page 44  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[DISTRIBUTED SYSTEMS] Page 45  

 

UNIT-IV 
 

Distributed file system 

 

Introduction: 

  It allows programs to access or store isolated files as they do with the local ones, allowing 

programmers to access files from any network or computer.  

 

The DFS makes it convenient to share information and files among users on a network in a controlled and 

authorized way. The server allows the client users to share files and store data just as if they are storing the 

information locally. However, the servers have full control over the data, and give access control to the 

clients. 

 

FILE SERVICE ARCHITECTURE:- 

 
 

1. Flat file service: A flat file service is used to perform operations on the contents of a file.  The Unique File 

Identifiers (UFIDs) are associated with each file in this service. For that long sequence of bits is used to 

uniquely identify each file among all of the available files in the distributed system. When a request is 

received by the Flat file service for the creation of a new file then it generates a new UFID and returns it to 

the requester. 

  

Flat File Service Model Operations: 

Read(FileId, i, n) -> Data: Reads up to n items from a file starting at item ‘i’ and returns it in Data. 

Write(FileId, i, Data): Write a sequence of Data to a file, starting at item I and extending the file if necessary. 

Create() -> FileId: Creates a new file with length 0 and assigns it a UFID. 

Delete(FileId): The file is removed from the file store. 

 

 

GetAttributes(FileId) -> Attr: Returns the file’s file characteristics. 

SetAttributes(FileId, Attr): Sets the attributes of the file. 

 

2. Directory Service: The directory service serves the purpose of relating file text names with their UFIDs 

(Unique File Identifiers).  The fetching of UFID can be made by providing the text name of the file to the 

directory service by the client.  The directory service provides operations for creating directories and adding 

new files to existing directories. 

Directory Service Model Operations: 

Lookup(Dir, Name) -> FileId : Returns the relevant UFID after finding the text name in the directory. Throws 



[DISTRIBUTED SYSTEMS] Page 46  

an exception if Name is not found in the directory. 

AddName(Dir, Name, File): Adds(Name, File) to the directory and modifies the file’s attribute record if 

Name is not in the directory. If a name already exists in the directory, an exception is thrown. 

UnName(Dir, Name): If Name is in the directory, the directory entry containing Name is removed. An 

exception is thrown if the Name is not found in the directory. 

GetNames(Dir, Pattern) -> NameSeq: Returns all the text names that match the regular expression Pattern in 

the directory. 

 

3. Client Module: The client module executes on each computer and delivers an integrated service (flat file 

and directory services) to application programs with the help of a single API. It stores information about the 

network locations of flat files and directory server processes. Here, recently used file blocks hold in a cache at 

the client-side, thus, resulting in improved performance. 

 

CASE STUDY 1:- SUN NETWORK FILE SYSTEM 

 

 

 

All implementations of NFS support the NFS protocol – a set of remote procedure calls that provide the 

means for clients to perform operations on a remote file store. The NFS protocol is operating system–

independent but was originally developed for use in networks of UNIX systems, and we shall describe the 

UNIX implementation the NFS protocol (version 3).The NFS server module resides in the kernel on each 

computer that acts as an NFS server. Requests referring to files in a remote file system are translated by the 

client module to NFS protocol operations and then passed to the NFS server module at the computer holding 

the relevant file system. 

The NFS client and server modules communicate using remote procedure calls. Sun’s RPC system, described 

in Section 5.3.3, was developed for use in NFS. It can be configured to use either UDP or TCP, and the NFS 

protocol is compatible with both. A port mapper service is included to enable clients to bind to services in a 

given host by name. The RPC interface to the NFS server is open: any process can send requests to an NFS 

server; if the requests are valid and they include valid user credentials, they will be 

acted upon. The submission of signed user credentials can be required as an optional security feature, as can 

the encryption of data for privacy and integrity. 



[DISTRIBUTED SYSTEMS] Page 47  

 

Virtual file system • Figure 12.8 makes it clear that NFS provides access transparency: user programs can 

issue file operations for local or remote files without distinction. Other distributed file systems may be present 

that support UNIX system calls, and if so, they could be integrated in the same way. 

 

The integration is achieved by a virtual file system (VFS) module, which has been added to the UNIX kernel 

to distinguish between local and remote files and to translate between the UNIX-independent file identifiers 

used by NFS and the internal file identifiers normally used in UNIX and other file systems. In addition, VFS 

keeps track of the filesystems that are currently available both locally and remotely, and it passes each request 

to the appropriate local system module (the UNIX file system, the NFS client module or the service module 

for another file system).The file identifiers used in NFS are called file handles. A file handle is opaque to 

clients and contains whatever information the server needs to distinguish an individual file. In UNIX 

implementations of NFS, the file handle is derived from the file’s i-node number by adding two extra fields as 

follows (the i-node number of a UNIX file is a number that serves to identify and locate the file within the file 

system in which the file is stored): 

 

 

 

NFS adopts the UNIX mountable filesystem as the unit of file grouping defined in the preceding section. The 

filesystem identifier field is a unique number that is allocated to each filesystem when it is created (and in the 

UNIX implementation is stored in the superblock of the file system). The i-node generation number is needed 

because in the conventional UNIX file system i-node numbers are reused after a file is removed. In the VFS 

extensions to the UNIX file system, a generation number is stored with each file and is incremented each time 

the i-node number is reused (for example, in a UNIX create system call). The client obtains the first file 

handle for a remote file system when it mounts it. File handles are passed from server to client in the results 

of lookup, create and mkdir operations (see Figure 12.9) and from client to server in the argument lists of all 

server operations. 

The virtual file system layer has one VFS structure for each mounted file system and one v-node per open file. 

A VFS structure relates a remote file system to the local directory on which it is mounted. The v-node 

contains an indicator to show whether a file is local or remote. If the file is local, the v-node contains a 

reference to the index of the local file (an i-node in a UNIX implementation). If the file is remote, it contains 

the file handle of the remote file. 

 

Client integration • The NFS client module plays the role described for the client module in our architectural 

model, supplying an interface suitable for use by conventional application programs. But unlike our model 

client module, it emulates the semantics of the standard UNIX file system primitives precisely and is 

integrated with the UNIX kernel. It is integrated with the kernel and not supplied as a library for loading into 

client processes so that: 

• user programs can access files via UNIX system calls without recompilation or 

reloading; 

• a single client module serves all of the user-level processes, with a shared cache 

of recently used blocks (described below); 

Access control and authentication • Unlike the conventional UNIX file system, the NFS server is stateless 

and does not keep files open on behalf of its clients. So the server must check the user’s identity against the 

file’s access permission attributes afresh on each request, to see whether the user is permitted to access the file 

in the manner requested. The Sun RPC protocol requires clients to send user authentication information (for 

example, the conventional UNIX 16-bit user ID and group ID) with each request and this is checked against 

the access permission in the file attributes. These additional parameters are not shown in our overview of the 

NFS protocol in Figure 12.9; they are supplied automatically by the RPC system. In its simplest form, there is 

a security loophole in this access-control mechanism. An NFS server provides a conventional RPC interface 



[DISTRIBUTED SYSTEMS] Page 48  

at a well-known port on each host and any process can behave as a client, sending requests to the server to 

access or update a file. The client can modify the RPC calls to include the user ID of any user, impersonating 

the user without their knowledge or permission. This security loophole has been closed by the use of an 

option in the RPC protocol for the DES encryption of the user’s authentication information. More recently, 

Kerberos has been integrated with Sun NFS to provide a stronger and more comprehensive solution to the 

problems of user authentication and security; we describe this below. 

 Cache: 

o Client side: 

 cache file data and metadata by block that is read from server in local memory 

 Cache serves as a temporary buffer for writes (allow asyncronous write) 

 Advantage: reduce network usage, improve performance 

 Disadvantage: write lost in memory after crash (safety vs. performance tradeoff) 

o Server side: 

 server can buffer the write in memory and write to disk asychronously 

 Problem: write in memory can lost 

 Sol: 

 battery-backed memory 

 commit each WRITE to stable storage before ack WRITE success to 

clients 

  



[DISTRIBUTED SYSTEMS] Page 49  

 

CASE STUDY -2  ANDREW FILE SYSTEM  

 

 

AFS provides transparent access to remote shared files for UNIX programs running on workstations. Access 

to AFS files is via the normal UNIX file primitives, enabling existing UNIX programs to access AFS files 

without modification or recompilation. AFS is compatible with NFS. AFS servers hold ‘local’ UNIX files, but 

the filing system in the servers is NFS-based, so files are referenced by NFS-style file handles rather than i-

node numbers, and the files may be remotely accessed via NFS. AFS differs markedly from NFS in its design 

and implementation. The differences are primarily attributable to the identification of scalability as the most 

important design goal. AFS is designed to perform well with larger numbers of active users than other 

distributed file systems.  

The key strategy for achieving scalability is the caching of whole files in client nodes. AFS has two unusual 

design characteristics: Whole-file serving: The entire contents of directories and files are transmitted to client 

computers by AFS servers (in AFS-3, files larger than 64 kbytes are transferred in 64-kbyte chunks). Whole-

file caching: Once a copy of a file or a chunk has been transferred to a client computer it is stored in a cache 

on the local disk. The cache contains several hundred of the files most recently used on that computer. The 

cache is permanent, surviving reboots of the client computer. Local copies of files are used to satisfy 

clients’ open requests in preference to remote copies whenever possible 

 

Operation of AFS: 

1. When a user process in a client computer issues an open system call for a file in the shared file space and 

there is not a current copy of the file in the local cache, the server holding the file is located and is sent a 

request for a copy of the file.  

2. The copy is stored in the local UNIX file system in the client computer. The copy is then  opened and the 

resulting UNIX file descriptor is returned to the client. 

3. Subsequent read, write and other operations on the file by processes in the client computer are applied to 

the local copy. 

4. When the process in the client issues a close system call, if the local copy has been   updated its contents 

are sent back to the server. The server updates the file contents and the timestamps on the file. The copy on 

the client’s local disk is retained in case it is needed again 

by a user-level process on the same workstation For shared files that are infrequently updated (such as those 



[DISTRIBUTED SYSTEMS] Page 50  

containing the code of UNIX commands and libraries) and for files that are normally accessed by only a 

single user (such as most of the files in a user’s home directory and its subtree), locally cached copies are 

likely to remain valid for long periods The local cache can be allocated a substantial proportion of the disk 

space on each workstation – say, 100 megabytes. This is normally sufficient for the establishment of a 

working set of the files used by one user. The provision of sufficient cache storage for the establishment of a 

working set ensures that files in regular use on agiven workstation are normally retained in the cache until 

they are needed again. 

• The design strategy is based on some assumptions about average and maximum file size and locality of 

reference to files in UNIX systems. These assumptions are derived from observations of typical UNIX 

workloads in academic and other environments [Satyanarayanan 1981, Ousterhout et al. 1985, Floyd 1986]. 

The most important observations are: 

– Files are small; most are less than 10 kilobytes in size. 

– Read operations on files are much more common than writes (about six times more common). 

– Sequential access is common, and random access is rare. 

– Most files are read and written by only one user. When a file is shared, it is usually only one user who 

modifies it. 

– Files are referenced in bursts. If a file has been referenced recently, there is a high probability that it will be 

referenced again in the near future. 

 

AFS is implemented as two software components that exist as UNIX processes called Vice and Venus. Figure 

12.11 shows the distribution of Vice and Venus processes. Vice is the name given to the server software that 

runs as a user-level UNIX process in each server computer, and Venus is a user-level process that runs in each 

client computer and corresponds to the client module in our abstract model. 

The files available to user processes running on workstations are either local or shared. Local files are 

handled as normal UNIX files. They are stored on a workstation’s disk and are available only to local user 

processes. Shared files are stored on servers, and copies of them are cached on the local disks of workstations. 

The name space seen by user. 

 

One of the file partitions on the local disk of each workstation is used as a cache, holding the cached copies of 

files from the shared space. Venus manages the cache, removing the least recently used files when a new file 

is acquired from a server to make the required space if the partition is full. The workstation cache is usually 

large enough to accommodate several hundred average-sized files, rendering the workstation largely 

independent of the Vice servers once a working set of the current user’s files and frequently used system files 

has been cached. 

AFS resembles the abstract file service model described in Section 12.2 in these respects: 

• A flat file service is implemented by the Vice servers, and the hierarchic directory structure required by 

UNIX user programs is implemented by the set of Venus processes in the workstations. 

• Each file and directory in the shared file space is identified by a unique, 96-bit file identifier (fid) similar to a 

UFID. The Venus processes translate the pathnames issued by clients to fids. 

Files are grouped into volumes for ease of location and movement. Volumes are generally smaller than the 

UNIX filesystems, which are the unit of file grouping in NFS. 

  

For example, each user’s personal files are generally located in a separate volume. Other 

volumes are allocated for system binaries, documentation and library code. The representation  

 

 

of fids includes the volume number for the volume containing the file (cf. the file group identifier in UFIDs), 

an NFS file handle identifying the file within the volume (cf. the file number in UFIDs) and a uniquifier to 

ensure that file identifiers are not reused: User programs use conventional UNIX pathnames to refer to files, 

but AFS uses fids in the communication between the Venus and Vice processes. The Vice servers accept 

requests only in terms of fids. Venus translates the pathnames supplied by clients into fids using a step-by-step 

lookup to obtain the information from the file directories held in the Vice servers. 

Figure 12.14 describes the actions taken by Vice, Venus and the UNIX kernel when a user process issues each 

of the system calls mentioned in our outline scenario above. The callback promise mentioned here is a 

mechanism for ensuring that cached copies of files are updated when another client closes the same file after 



[DISTRIBUTED SYSTEMS] Page 51  

updating it 

 

 

Cache consistency 

When Vice supplies a copy of a file to a Venus process it also provides a callback promise – a token issued by 

the Vice server that is the custodian of the file, guaranteeing that it will notify the Venus process when any 

other client modifies the file. Callback promises are stored with the cached files on the workstation disks and 

have two states: valid or cancelled. When a server performs a request to update a file it notifies all of the 

Venus processes to which it has issued callback promises by sending a callback to each – a callback is a 

remote procedure call from a server to a Venus process.  

 

When the Venus process receives a callback, it sets the callback promise token for the relevant file to 

cancelled. 

Whenever Venus handles an open on behalf of a client, it checks the cache. If the required file is found in the 

cache, then its token is checked. If its value is cancelled, then a fresh copy of the file must be fetched from the 

Vice server, but if the token is valid, then the cached copy can be opened and used without reference to Vice. 

 

When a workstation is restarted after a failure or a shutdown, Venus aims to retain as many as possible of the 

cached files on the local disk, but it cannot assume that the callback promise tokens are correct, since some 

callbacks may have been missed. Before the first use of each cached file or directory after a restart, Venus 

therefore generates a cache validation request containing the file modification timestamp to the server that is 

the custodian of the file. If the timestamp is current, the server responds with valid and the token is reinstated. 

If the timestamp shows that the file is out of date, then the server responds with cancelled and the token is set 

to cancelled. Callbacks must be renewed before an open if a time T (typically on the order of a few minutes) 

has elapsed since the file was cached without communication from the server. This is to deal with possible 



[DISTRIBUTED SYSTEMS] Page 52  

communication failures, which can result in the loss of callback messages. 

 

This callback-based mechanism for maintaining cache consistency was adopted as offering the most scalable 

approach, following the evaluation in the prototype (AFS-1) of a timestamp-based mechanism similar to that 

used in NFS. In AFS-1, a Venus process holding a cached copy of a file interrogates the Vice process on each 

open to determine whether the timestamp on the local copy agrees with that on the server. The callback based 

approach is more scalable because it results in communication between client and server and activity in the 

server only when the file has been updated, whereas the timestamp approach results in a client-server 

interaction on each open, even when there is a valid local copy. Since the majority of files are not accessed 

concurrently, and read operations predominate over writes in most applications, the callback mechanism 

results in a dramatic reduction in the number of client-server interactions. 

 

The callback mechanism used in AFS-2 and later versions of AFS requires Vice servers to maintain some 

state on behalf of their Venus clients, unlike AFS-1, NFS and our file service model. The client-dependent 

state required consists of a list of the Venus processes to which callback promises have been issued for each 

file. These callback lists must be retained over server failures – they are held on the server disks and are 

updated using atomic operations. 

 

 

 

Distributed Shared Memory 

 

DSM is a mechanism that manages memory across multiple nodes and makes inter-process communications 

transparent to end-users. The applications will think that they are running on shared memory. DSM is a 

mechanism of allowing user processes to access shared data without using inter-process communications. In 

DSM every node has its own memory and provides memory read and write services and it provides 

consistency protocols. The distributed shared memory (DSM) implements the shared memory model in 

distributed systems but it doesn’t have physical shared memory. All the nodes share the virtual address space 

provided by the shared memory model. 

 

Design and implantation issues :- 

1. Granularity: Granularity refers to the block size of a DSM system. Granularity refers to the unit of sharing 

and the unit of data moving across the network when a network block shortcoming then we can utilize the 

estimation of the block size as words/phrases. The block size might be different for the various networks. 

 

2.Structure of shared memory space: Structure refers to the design of the shared data in the memory. The 

structure of the shared memory space of a DSM    system is regularly dependent on the sort of applications 

that the DSM  system is intended to support. 

 



[DISTRIBUTED SYSTEMS] Page 53  

 

 

3. Memory coherence and access synchronization: In the DSM system the shared data things ought to be 

accessible by different nodes simultaneously in the network. The fundamental issue in this system is data 

irregularity. The data irregularity might be raised by the synchronous access. To solve this problem in the 

DSM system we need to utilize some synchronization primitives, semaphores, event count, and so on. 

 

4. Data location and access: To share the data in the DSM system it ought to be possible to locate and retrieve 

the data as accessed by clients or processors. Therefore the DSM system must implement some form of data 

block finding system to serve network data to meet the  

requirement of the memory coherence semantics being utilized.  

 

5. Replacement strategy: In the local memory of the node is full, a cache miss at the node implies not just a 

get of the gotten to information block from a remote node but also a replacement. A data block of the local 

memory should be replaced by the new data block. Accordingly, a position substitution methodology is 

additionally vital in the design of a DSM system. 

 

6. Thrashing: In a DSM system data blocks move between nodes on demand. In this way on the off chance 

that 2 nodes complete for write access to the single data item. The data relating data block might be moved to 

back and forth at such a high rate that no genuine work can get gone. The DSM system should utilize an 

approach to keep away from a situation generally known as thrashing. 

 

7. Heterogeneity: The DSM system worked for homogeneous systems and need not address the heterogeneity 

issue. In any case, assuming the underlined system environment is heterogeneous, the DSM system should be 

designed to deal with heterogeneous, so it works appropriately with machines having different architectures. 

 

Consistency Model:-  

 

Strict Consistency Model: "The strict consistency model is the strongest form of memory coherence, having 

the most stringent consistency requirements. A shared-memory system is said to support the strict consistency 

model if the value returned by a read operation on a memory address is always the same as the value written 

by the most recent write operation to that address, irrespective of the locations of the processes performing the 

read and write operations. That is, all writes instantaneously become visible to all processes." 

 

Sequential Consistency Model: "The sequential consistency model was proposed by Lamport ... . A shared-

memory system is said to support the sequential consistency model if all processes see the same order of all 

memory access operations on the shared memory. The exact order in which the memory access operations are 

interleaved does not matter. ... If one process sees one of the orderings of ... three operations and another 

process sees a different one, the memory is not a sequentially consistent memory."       

 

Casual Consistency Model: "The causal consistency model ... relaxes the requirement of the sequential 

model for better concurrency. Unlike the sequential consistency model, in the causal consistency model, all 

processes see only those memory reference operations in the same (correct) order that are potentially causally 

related. Memory reference operations that are not potentially causally related may be seen by different 

processes in different orders. 

 

FIFO Consistency Model: For FIFO consistency, "Writes done by a single process are seen by all other 

processes in the order in which they were issued, but writes from different processes may be seen in a 

different order by different processes. 

 

"FIFO consistency is called PRAM consistency in the case of distributed shared memory systems." 

Pipelined Random-Access Memory (PRAM) Consistency Model: "The pipelined random-access memory 

(PRAM) consistency model ... provides a weaker consistency semantics than the (first three) consistency 

models described so far. It only ensures that all write operations performed by a single process are seen by all 

other processes in the order in which they were performed as if all the write operations performed by a single 



[DISTRIBUTED SYSTEMS] Page 54  

process are in a pipeline. Write operations performed by different processes may be seen by different 

processes in different orders." 

 

 

Weak Consistency Model: "Synchronization accesses (accesses required to perform synchronization 

operations) are sequentially consistent. Before a synchronization access can be performed, all previous regular 

data accesses must be completed. Before a regular data access can be performed, all previous synchronization 

accesses must be completed. This essentially leaves the problem of consistency up to the programmer. The 

memory will only be consistent immediately after a synchronization operation. 

 

Release Consistency Model: "Release consistency is essentially the same as weak consistency, but 

synchronization accesses must only be processor consistent with respect to each other. Synchronization 

operations are broken down into acquire and release operations. All pending acquires (e.g., a lock operation) 

must be done before a release (e.g., an unlock operation) is done. Local dependencies within the same 

processor must still be respected. 

"Release consistency is a further relaxation of weak consistency without a significant loss of coherence. 

 

Entry Consistency Model: "Like ... variants of release consistency, it requires the programmer (or compiler) 

to use acquire and release at the start and end of each critical section, respectively. However, unlike release 

consistency, entry consistency requires each ordinary shared data item to be associated with some 

synchronization variable, such as a lock or barrier. If it is desired that elements of an array be accessed 

independently in parallel, then different array elements must be associated with different locks. When an 

acquire is done on a synchronization variable, only those data guarded by that synchronization variable are 

made consistent. 

 

Processor Consistency Model: "Writes issued by a processor are observed in the same order in which they 

were issued. However, the order in which writes from two processors occur, as observed by themselves or a 

third processor, need not be identical. That is, two simultaneous reads of the same location from different 

processors may yield different results. 

 

General Consistency Model: "A system supports general consistency if all the copies of a memory location 

eventually contain the same data when all the writes issued by every processorhavecompleted." 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[DISTRIBUTED SYSTEMS] Page 55  

 

 

 

 

UNIT-V  

 

TRANSACTIONS & Concurrency Control Introduction: 

 

A transaction defines a sequence of server operations that is guaranteed by the server to be atomic in 

the presence of multiple clients and server crashes and must be done in an ACID-compliant manner. 

Atomicity –  

The transaction is completed entirely or not at all. 

Consistency –  

It is a term that refers to the transition from one consistent state to another. 

Durability: After a transaction has completed successfully, all its effects are saved in permanent storage. We 

use the term ‘permanent storage’ to refer to files held on disk or another permanent medium. Data saved in a 

file will survive if the server process crashes. 

 

Isolation: Each transaction must be performed without interference from other transactions; in other words, 

the intermediate effects of a transaction must not be visible to other transactions. The box below introduces a 

mnemonic, ACID, for remembering the properties of atomic transactions. 

 

The goal of transactions is to ensure that all of the objects managed by a server remain in a consistent state 

when they are accessed by multiple transactions and in the presence of server crashes. 

 

Transaction capabilities can be added to servers of recoverable objects. Each 

transaction is created and managed by a coordinator, which implements the Coordinator 

interface 

 

 

The coordinator gives each transaction an identifier, or TID. The client invokes the openTransaction method 

of the coordinator to introduce a new transaction – a transaction identifier or TID is allocated and returned. At 

the end of a transaction, the client invokes the closeTransaction method to indicate its end – all of 

the recoverable objects accessed by the transaction should be saved. If, for some reason, the client wants to 

abort a transaction, it invokes the abortTransaction method – all of its effects should be removed from sight. 

 

A transaction is achieved by cooperation between a client program, some  recoverable objects and a 

coordinator. The client specifies the sequence of invocations on recoverable objects that are to comprise a 

transaction. To achieve this, the client sends with each invocation the transaction identifier returned by 

openTransaction. One way to make this possible is to include an extra argument in each operation of a 

recoverable object to carry the TID. 

 

https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/acid-properties-in-dbms/


[DISTRIBUTED SYSTEMS] Page 56  

 

 

Normally, a transaction completes when the client makes a closeTransaction request. If the transaction has 

progressed normally, the reply states that the transaction is committed – this constitutes a promise to the client 

that all of the changes requested in the transaction are permanently recorded and that any future transactions 

that access the same data will see the results of all of the changes made during the transaction. Alternatively, 

the transaction may have to abort for one of several reasons related to the nature of the transaction itself, to 

conflicts with another transaction or to the crashing of a process or computer. When a transaction is aborted 

the parties involved  (the recoverable objects and the coordinator) must ensure that none of its effects are 

visible to future transactions, either in the objects or in their copies in permanent storage. A transaction is 

either successful or is aborted in one of two ways – the client aborts it (using an abortTransaction call to the 

server) or the server aborts it shows these three alternative life histories for transactions.  

 

We refer to a transaction as failing in both of the latter cases. 

Service actions related to process crashes • If a server process crashes unexpectedly, it is eventually 

replaced. The new server process aborts any uncommitted transactions and uses a recovery procedure to 

restore the values of the objects to the values produced by the most recently committed transaction. To deal 

with a client that crashes unexpectedly during a transaction, servers can give each transaction an expiry time 

and abort any transaction that has not completed before its expiry time. 

Client actions related to server process crashes • If a server crashes while a transaction is in progress, the 

client will become aware of this when one of the operations returns an exception after a timeout. If a server 

crashes and is then replaced during the progress of a transaction, the transaction will no longer be valid and 

the client must be informed via an exception to the next operation. In either case, the client must then 

formulate a plan, possibly in consultation with the human user, for the completion or abandonment of the 

task of which the transaction was a part. 

 

Nested Transactions :- 

 

A transaction that includes other transactions within its initiating point and a end point are known as nested 

transactions. So the nesting of the transactions is done in a transaction. The nested transactions here are called 

sub-transactions. 

The top-level transaction in a nested transaction can open sub-transactions, and each sub-transaction can open 

more sub-transactions down to any depth of nesting. When a subtransaction aborts, the parent 

transaction can sometimes choose an alternative subtransaction to complete its task 

 
 

The rules for committing of nested transactions are rather subtle: 

• A transaction may commit or abort only after its child transactions have completed. 

• When a subtransaction completes, it makes an independent decision either to commit provisionally or to 

abort. Its decision to abort is final. 

• When a parent aborts, all of its subtransactions are aborted. For example, if T2 aborts then T21 and T211 

must also abort, even though they may have provisionally committed. 

• When a subtransaction aborts, the parent can decide whether to abort or not. In our example, T decides to 



[DISTRIBUTED SYSTEMS] Page 57  

commit although T2 has aborted 

• If the top-level transaction commits, then all of the subtransactions that have provisionally committed can 

commit too, provided that none of their ancestors has aborted. In our example, T’s commitment allows T1, 

T11 and T12 to commit, but not T21 and T211 since their parent, T2, aborted. Note that the effects of a 

subtransaction are not permanent until the top-level transaction commits. 

 

Nested transactions have the following main advantages: 

 

1. Subtransactions at one level (and their descendants) may run concurrently with other subtransactions at the 

same level in the hierarchy. This can allow additional concurrency in a transaction. When subtransactions run 

in different servers, they can work in parallel.  

 

2. Subtransactions can commit or abort independently. In comparison with a single transaction, a set of nested 

subtransactions is potentially more robust.  

 

All of the concurrency control protocols are based on the criterion of serial equivalence and are derived from 

rules for conflicts between operations. Three methods are described: 

 

• Locks are used to order transactions that access the same objects according to the order of arrival of their 

operations at the objects. 

• Optimistic concurrency control allows transactions to proceed until they are ready to commit, whereupon a 

check is made to see whether they have performed conflicting operations on objects. 

• Timestamp ordering uses timestamps to order transactions that access the same objects according to their 

starting times. 

 

LOCKS:- 

 

In this locking scheme, the server attempts to lock any object that is about to be used by any operation of a 

client’s transaction. If a client requests access to an object that is already locked due to another client’s 

transaction, the request is suspended and the client must wait until the object is unlocked. 

 

 

In this example, it is assumed that when transactions T and U start, the balances of the accounts A, B and C 

are not yet locked. When transaction T is about to use account B, it is locked for T. When transaction U is 

about to use B it is still 

locked for T, so transaction U waits. When transaction T is committed, B is unlocked, whereupon transaction 

U is resumed. The use of the lock on B effectively serializes the access to B. Note that if, for example, T 



[DISTRIBUTED SYSTEMS] Page 58  

released the lock on B between its getBalance and setBalance operations, transaction U’s getBalance 

operation on B could be 

interleaved between them. 

 

Serial equivalence requires that all of a transaction’s accesses to a particular object be serialized with respect 

to accesses by other transactions. All pairs of conflicting operations of two transactions should be executed in 

the same order. To ensure this, a transaction is not allowed any new locks after it has released a lock. The first 

phase of each transaction is a ‘growing phase’, during which new locks are acquired. In the 

second phase, the locks are released (a ‘shrinking phase’). This is called two-phase locking. 

 

It is preferable to adopt a locking scheme that controls the access to each object so that there can be several 

concurrent transactions reading an object, or a single transaction writing an object, but not both. This is 

commonly referred to as a ‘many readers/single writer’ scheme. Two types of locks are used: read locks and 

write locks. Before a transaction’s read operation is performed, a read lock should be set on the object. Before 

a transaction’s write operation is performed, a write lock should be set on the object. Whenever it is 

impossible to set a lock immediately, the transaction (and the client) must wait until it is possible to do so – a 

client’s request is never rejected.  

 

As pairs of read operations from different transactions do not conflict, an attempt to set a read lock on an 

object with a read lock is always successful. All the transactions reading the same object share its read lock – 

for this reason, read locks are sometimes called shared locks. 

The operation conflict rules tell us that: 

1. If a transaction T has already performed a read operation on a particular object, then a concurrent 

transaction U must not write that object until T commits or aborts. 

2. If a transaction T has already performed a write operation on a particular object, then a concurrent 

transaction U must not read or write that object until T commits or aborts. 

 

To enforce condition 1, a request for a write lock on an object is delayed by the presence of a read lock 

belonging to another transaction. To enforce condition 2, a request for either a read lock or a write lock on an 

object is delayed by the presence of a write lock belonging to another transaction 

 

 

 

 

 

 

The granting of locks will be implemented by a separate object in the server that we call the lock manager. 

The lock manager holds a set of locks, for example in a hash table. Each lock is an instance of the class Lock 

and is associated with a particular object. The class Lock is shown in Figure 16.17. Each instance of Lock 



[DISTRIBUTED SYSTEMS] Page 59  

maintains the following information in its instance variables: 

• the identifier of the locked object; 

• the transaction identifiers of the transactions that currently hold the lock (shared 

locks can have several holders); 

• a lock type. 

 

if no other transaction holds the lock, just add the given transaction to the holders and set the type; 

• else if another transaction holds the lock, share it by adding the given transaction to the holders (unless it is 

already a holder); 

• else if this transaction is a holder but is requesting a more exclusive lock, promote the lock. 

 

All requests to set locks and to release them on behalf of transactions are sent to an instance of LockManager: 

• The setLock method’s arguments specify the object that the given transaction wants to lock and the type of 

lock. It finds a lock for that object in its hashtable or, if necessary, creates one. It then invokes the acquire 

method of that lock. 

• The unLock method’s argument specifies the transaction that is releasing its locks. 

It finds all of the locks in the hashtable that have the given transaction as a holder. 

For each one, it calls the release method 

 

Locking rules for nested transactions  

 

• The aim of a locking scheme for nested transactions is to serialize access to objects so that: 

1. Each set of nested transactions is a single entity that must be prevented from observing the partial effects of 

any other set of nested transactions. 

2. Each transaction within a set of nested transactions must be prevented from observing the partial effects of 

the other transactions in the set. 

The second rule is enforced as follows: 

• Parent transactions are not allowed to run concurrently with their child transactions. If a parent transaction 

has a lock on an object, it retains the lock during the time that its child transaction is executing. This means 

that the child 

transaction temporarily acquires the lock from its parent for its duration. 

• Subtransactions at the same level are allowed to run concurrently, so when they access the same objects, the 

locking scheme must serialize their access. 

 

The use of locks can lead to deadlock. Deadlock is a state in which each member of a group of transactions is 

waiting for some other member to release a lock 

 

 Consider the use of locks shown in Figure 16.19. 

 

 
 

 



[DISTRIBUTED SYSTEMS] Page 60  

 

Since the deposit and withdraw methods are atomic, we show them acquiring write locks – although in 

practice they read the balance and then write it. Each of them acquires a lock on one account and then gets 

blocked when it tries to access the account that the other one has locked. This is a deadlock situation – two 

transactions are waiting, and 

each is dependent on the other to release a lock so it can resume 

 

A wait-for graph can be used to represent the waiting relationships between current transactions. In a wait-for 

graph the nodes represent transactions and the edges represent wait-for relationships between transactions – 

there is an edge from node T to node U when transaction T is waiting for transaction U to release a lock. 

 

 

 

Each transaction is waiting for the next transaction in the cycle. All of these transactions are blocked waiting 

for locks. None of the locks can ever be released, and the transactions are deadlocked. If one of the 

transactions in a cycle is aborted, then its locks are released and that cycle is broken. For example, if 

transaction T in Figure 16.21 is aborted, it will release a lock on an object that V is waiting for – and V will no 

longer be waiting for T. 

 

Deadlock prevention • One solution is to prevent deadlock. An apparently simple but not very good way to 

overcome the deadlock problem is to lock all of the objects used by a transaction when it starts. This would 

need to be done as a single atomic step so as to avoid deadlock at this stage. Such a transaction cannot run 

into deadlocks with other transactions, but this approach unnecessarily restricts access to shared resources. In 

addition, it is sometimes impossible to predict at the start of a transaction which objects will be used. This is 

generally the case in interactive applications, for the user would have to say in advance exactly which objects 

they were planning to use – this is inconceivable in browsing-style applications, which allow users to find 

objects they do not know about in advance. Deadlocks can also be prevented by requesting locks on 

objects in a predefined order, but this can result in premature locking and a reduction in concurrency. 

 

Upgrade locks • CORBA’s Concurrency Control Service introduces a third type of lock, called upgrade, the 

use of which is intended to avoid deadlocks. Deadlocks are often caused by two conflicting transactions first 

taking read locks and then attempting to promote them to write locks. A transaction with an upgrade lock on a 

data item is permitted to read that data item, but this lock conflicts with any upgrade locks set by 

other transactions on the same data item. This type of lock cannot be set implicitly by the use of a read 

operation, but must be requested by the client. 

 

 



[DISTRIBUTED SYSTEMS] Page 61  

 

 

Deadlock detection • Deadlocks may be detected by finding cycles in the wait-for graph. Having detected a 

deadlock, a transaction must be selected for abortion to break the cycle. The software responsible for 

deadlock detection can be part of the lock manager. It must hold a representation of the wait-for graph so that 

it can check it for cycles from time to time. Edges are added to the graph and removed from the graph by the 

lock manager’s setLock and unLock operations. 

 

 

Timeouts • Lock timeouts are a method for resolution of deadlocks that is commonly used. Each lock is given 

a limited period in which it is invulnerable. After this time, a lock becomes vulnerable. Provided that no other 

transaction is competing for the object that is locked, an object with a vulnerable lock remains locked. 

However, if any other transaction is waiting to access the object protected by a vulnerable lock, the lock is 

broken (that is, the object is unlocked) and the waiting transaction resumes. The transaction whose lock has 

been broken is normally aborted. 

There are many problems with the use of timeouts as a remedy for deadlocks: the worst problem is that 

transactions are sometimes aborted due to their locks becoming vulnerable when other transactions are 

waiting for them, but there is actually no deadlock. 

 

OPTIMISTIC CONCURRENCY CONTROL:- 

 

Lock maintenance represents an overhead that is not present in systems that do not support concurrent access 

to shared data. To avoid cascading aborts, locks cannot be released until the end of the transaction. This may 

reduce significantly the potential for concurrency. The use of locks can result in deadlock The alternative 

approach proposed by Kung and Robinson is ‘optimistic’ because it is based on the observation that, in most 

applications, the likelihood of two clients’ transactions accessing the same object is low. Transactions are 

allowed to proceed as though there were no possibility of conflict with other transactions until the client 

completes its task and issues a closeTransaction request. When a conflict arises, some transaction is generally 

aborted and will need to be restarted by the client.  

 

Each transaction has the following phases: 

Working phase: During the working phase, each transaction has a tentative version of each of the objects that 

it updates. This is a copy of the most recently committed version of the object. The use of tentative versions 

allows the transaction to abort (with no effect on the objects), either during the working phase or if it fails 

validation due to other conflicting transactions. read operations are performed immediately – if a tentative 

version for that transaction already exists, a read operation accesses it; otherwise, it accesses the most 

recently committed value of the object. write 

operations record the new values of the objects as tentative values (which are invisible to other transactions). 



[DISTRIBUTED SYSTEMS] Page 62  

When there are several concurrent transactions, several different tentative values of the same object may 

coexist. 

 

 

Validation phase: When the closeTransaction request is received, the transaction is validated to establish 

whether or not its operations on objects conflict with operations of other transactions on the same objects. If 

the validation is successful, then the transaction can commit. If the validation fails, then some form of conflict 

resolution must be used and either the current transaction or, in some cases, those with which it 

conflicts will need to be aborted. 

Update phase: If a transaction is validated, all of the changes recorded in its tentative versions are made 

permanent. Read-only transactions can commit immediately after passing validation. Write transactions are 

ready to commit once the tentative versions of the objects have been recorded in permanent storage. 

 

The validation test on transaction Tv is based on conflicts between operations in pairs of transactions Ti and 

Tv. For a transaction Tv to be serializable with respect to an overlapping transaction Ti, their operations must 

conform to the following rules: 

 

 

As the validation and update phases of a transaction are generally short in duration compared with the 

working phase, a simplification can be achieved by making the rule that only one transaction may be in the 

validation and update phase at one time. When no two transactions may overlap in the update phase, rule 3 is 

satisfied. 

 

 

Backward validation • As all the read operations of earlier overlapping transactions were performed before 

the validation of Tv started, they cannot be affected by the writes of the current transaction (and rule 1 is 

satisfied). The validation of transaction Tv checks whether its read set (the objects affected by the read 

operations of Tv) overlaps with any of the write sets of earlier overlapping transactions, Ti (rule 2). If there is 

any overlap, the validation fails. 

 

Let startTn be the biggest transaction number assigned (to some other committed transaction) at the time 

when transaction Tv started its working phase and finishTn be the biggest transaction number assigned at the 

time when Tv entered the validation phase.  

The following program describes the algorithm for the validation of Tv: 



[DISTRIBUTED SYSTEMS] Page 63  

boolean valid = true; 

for (int Ti = startTn+1; Ti <= finishTn; Ti++){ 

if (read set of Tv intersects write set of Ti) valid = false; 

} 

 

 

 

In backward validation, the read set of the transaction being validated is compared with the write sets of other 

transactions that have already committed. Therefore, the only way to resolve any conflicts is to abort the 

transaction that is undergoing validation. In backward validation, transactions that have no read operations 

(only write 

operations) need not be checked 

. 

Forward validation • In forward validation of the transaction Tv, the write set of Tv is 

compared with the read sets of all overlapping active transactions – those that are still in 

their working phase (rule 1). Rule 2 is automatically fulfilled because the active 

transactions do not write until after Tv has completed. Let the active transactions have 

(consecutive) transaction identifiers active1 to activeN. The following program describes 

the algorithm for the forward validation of Tv: 

boolean valid = true; 

for (int Tid = active1; Tid <= activeN; Tid++){ 

if (write set of Tv intersects read set of Tid) valid = false; 

} 

As the read sets of the transaction being validated are not included in the check, read-only transactions always 

pass the validation check. As the transactions being compared with the validating transaction are still active, 

we have a choice of whether to abort the validating transaction or to pursue some alternative way of resolving 

the conflict 

In general, the read sets of transactions are much larger than the write sets. Therefore, backward validation 

compares a possibly large read set against the old write sets, whereas forward validation checks a small write 

set against the read sets of active transactions. We see that backward validation has the overhead of storing 

old write sets until they are no longer needed. On the other hand, forward validation has to allow for new 

transactions starting during the validation process. 

 

Starvation • When a transaction is aborted, it will normally be restarted by the client program. But in 

schemes that rely on aborting and restarting transactions, there is no guarantee that a particular transaction 

will ever pass the validation checks, for it may come into conflict with other transactions for the use of objects 

each time it is restarted. The prevention of a transaction ever being able to commit is called starvation. 

Occurrences of starvation are likely to be rare, but a server that uses optimistic concurrency control must 

ensure that a client does not have its transaction aborted repeatedly. 

 

TIME STAMP ORDERING :- 

 

In concurrency control schemes based on timestamp ordering, each operation in a transaction is validated 

when it is carried out. If the operation cannot be validated, the transaction is aborted immediately and can 

then be restarted by the client. Each transaction is assigned a unique timestamp value when it starts. The 

timestamp defines its position in the time sequence of transactions. Requests from transactions can be 

totally ordered according to their timestamps. The basic timestamp ordering rule is based on operation 

conflicts and is very simple: 

A transaction’s request to write an object is valid only if that object was last read and written by earlier 

transactions. A transaction’s request to read an object is valid only if that object was last written by an earlier 

transaction. 

 

 

 

 



[DISTRIBUTED SYSTEMS] Page 64  

 

 

 

 

 

 

 

 

 

 
The write operations may be performed after the closeTransaction operation has returned, without making the 

client wait. But the client must wait when read operations need to wait for earlier transactions to finish. This 

cannot lead to deadlock, since transactions only wait for earlier ones (and no cycle could occur in the wait-for 

graph). 

Timestamps may be assigned from the server’s clock or, as in the previous section, a ‘pseudo-time’ may be 

based on a counter that is incremented whenever a timestamp value is issued. 

 

Every object has a write timestamp and a set of tentative versions, each of which has a write timestamp 

associated with it; each object also has a set of read timestamps. The write timestamp of the (committed) 

object is earlier than that of any of its tentative versions, and the set of read timestamps can be represented by 

its maximum member. Whenever a transaction’s write operation on an object is accepted, the server creates a 

new tentative version of the object with its write timestamp set to the transaction timestamp. A transaction’s 

read operation is directed to the version with the maximum write timestamp less than the transaction 

timestamp. Whenever a transaction’s read operation on an object is accepted, the timestamp of the transaction 

is added to its set of read timestamps. When a transaction is committed, the values of the 

tentative versions become the values of the objects, and the timestamps of the tentative versions become the 

timestamps of the corresponding objects. 

 

In timestamp ordering, each request by a transaction for a read or write operation on an object is checked to 

see whether it conforms to the operation conflict rules. A request by the current transaction Tc can conflict 

with previous operations done by other transactions, Ti, whose timestamps indicate that they should be later 

than Tc.  

 

Timestamp ordering write rule: 

If a tentative version with write timestamp Tc already exists, the write operation is addressed to it; otherwise, 

a new tentative version is created and given write timestamp Tc. Note that any write that ‘arrives too late’ is 

aborted – it is too late in the sense that a transaction with a later timestamp has already read or written the 

object. 

 

Timestamp ordering write rule: 

If transaction Tc has already written its own version of the object, this will be used. 



[DISTRIBUTED SYSTEMS] Page 65  

• A read operation that arrives too early waits for the earlier transaction to complete. If the earlier transaction 

commits, then Tc will read from its committed version. If it aborts, then Tc will repeat the read rule (and 

select the previous version). This rule prevents dirty reads. 

• A read operation that ‘arrives too late’ is aborted – it is too late in the sense that a transaction with a later 

timestamp has already written the object  

 

When a coordinator receives a request to commit a transaction, it will always be able to do so because all the 

operations of transactions are checked for consistency with those of earlier transactions before being carried 

out. The committed versions of each object must be created in timestamp order. Therefore, a coordinator 

sometimes needs to wait for earlier transactions to complete before writing all the committed versions of the 

objects accessed by a particular transaction, but there is no need for the client to wait.  

 

Timestamp ordering algorithm is a strict one – it ensures strict executions of transactions. The timestamp 

ordering read rule delays a transaction’s read operation on any object until all transactions that had previously 

written that object have committed or aborted. The arrangement to commit versions in order ensures that the 

execution of a transaction’s write operation on any object is delayed until all transactions that had previously 

written that object have committed or aborted. 

 

Comparison of methods for concurrency control 

 

The timestamp ordering method is similar to two-phase locking in that both usepessimistic approaches in 

which conflicts between transactions are detected as each object is accessed. On the one hand, timestamp 

ordering decides the serialization order statically – when a transaction starts. On the other hand, two-phase 

locking decides the serialization order dynamically – according to the order in which objects are accessed. 

 

Timestamp ordering, and in particular multiversion timestamp ordering, is better than strict two-phase locking 

for read-only transactions. Two-phase locking is better when the operations in transactions are predominantly 

updates. Some work uses the observation that timestamp ordering is beneficial for transactions with 

predominantly read operations and that locking is beneficial for transactions with more writes than reads as 

an argument for allowing hybrid schemes in which some transactions use timestamp ordering and others use 

locking for concurrency control 

 

When optimistic concurrency control is used, all transactions are allowed to proceed, but some are aborted 

when they attempt to commit, or in forward validation transactions are aborted earlier. This results in 

relatively efficient operation when there are few conflicts, but a substantial amount of work may have to be 

repeated when a transaction is aborted. 

 

For Example Dropbox 

uses an optimistic form of concurrency control, keeping track of consistency and preventing clashes between 

users’ updates – which are at the granularity of whole files. Thus if two users make concurrent updates to the 

same file, the first write will be accepted and the second rejected. However, Dropbox provides a version 

history to enable users to merge their updates manually or restore previous versions. 

 

Distributed Transactions:- 

 

Distributed  transactions – those that involve more than one server. Distributed transactions may be either flat 

or nested. 

A client transaction becomes distributed if it invokes operations in several different servers. There are two 

different ways that distributed transactions can be structured: as flat transactions and as nested transactions 

. 

In a flat transaction, a client makes requests to more than one server. For example, in Figure 17.1(a), 

transaction T is a flat transaction that invokes operations on objects in servers X, Y and Z. A flat client 

transaction completes each of its requests before going on to the next one. Therefore, each transaction 

accesses servers’ objects sequentially. When servers use locking, a transaction can only be waiting for one 

object at a time.  



[DISTRIBUTED SYSTEMS] Page 66  

 

 

 

 

In a nested transaction, the top-level transaction can open subtransactions, and each subtransaction can open 

further subtransactions down to any depth of nesting. 

 

 
 

Atomic commit protocols 

 

In the case of a distributed transaction, the client has requested operations at more than one server. A 

transaction comes to an end when the client requests that it be committed or aborted. A simple way to 

complete the transaction in an atomic manner is for the coordinator to communicate the commit or abort 

request to all of the participants in the transaction and to keep on repeating the request until all of them have 

acknowledged that they have carried it out. This is an example of a onephase atomic commit protocol.  This 

simple one-phase atomic commit protocol is inadequate, though, because it does not allow a server to make a 

unilateral decision to abort a transaction when the client requests a commit. Reasons that prevent a server 

from being able to commit its part of a transaction generally relate to issues of concurrency control 

 

The two-phase commit protocol is designed to allow any participant to abort its 

part of a transaction. Due to the requirement for atomicity, if one part of a transaction is 

aborted, then the whole transaction must be aborted. 

 

Two – Phase Commit Protocol 

 

In the first phase of the two-phase commit protocol the coordinator asks all the participants if they are 

prepared to commit; in the second, it tells them to commit (or abort) the transaction. If a participant can 

commit its part of a transaction, it will agree as soon as it has recorded the changes it has made (to the objects) 

and its status in permanent storage and is therefore prepared to commit. The coordinator in a distributed 

transaction communicates with the participants to carry out the two-phase commit protocol by means of the 

operations 

 



[DISTRIBUTED SYSTEMS] Page 67  

 

 

 

 

 

 

 

 

 

The two-phase commit protocol consists of a voting phase and a completion phase, as shown in Figure 17.5. 

By the end of step 2, the coordinator and all the participants that voted Yes are prepared to commit. By the end 

of step 3, the transaction is effectively completed. At step 3a the coordinator and the participants are 

committed, so the coordinator can report a decision to commit to the client. At 3b the coordinator reports a 

decision to abort to the client. At step 4 participants confirm that they have committed so that the coordinator 

knows when the information it has recorded about the transaction is no longer needed 

 
 



[DISTRIBUTED SYSTEMS] Page 68  

Performance of the two-phase commit protocol • Provided that all goes well – that is, that the coordinator, 

the participants and the communications between them do not fail – the two-phase commit protocol involving 

N participants can be completed with N canCommit? messages and replies, followed by N doCommit 

messages. That is, the cost in messages is proportional to 3N, and the cost in time is three rounds of messages. 

The haveCommitted messages are not counted in the estimated cost of the protocol, which  can function 

correctly without them – their role is to enable servers to delete stale coordinator information. 

 

In the worst case, there may be arbitrarily many server and communication failures during the two-phase 

commit protocol. However, the protocol is designed to tolerate a succession of failures (server crashes or lost 

messages) and is guaranteed to complete eventually, although it is not possible to specify a time limit within 

which it will be completed. 

 

 
 

Two-phase commit protocol for nested transactions 

 

When a subtransaction completes, it makes an independent decision either to commit provisionally or to 

abort. A provisional commit is different from being prepared to commit: nothing is backed up in permanent 

storage. If the server crashes subsequently, its replacement will not be able to commit. After all 

subtransactions have completed, the provisionally committed ones participate in a two-phase commit 

protocol, in which servers of provisionally committed subtransactions express their intention to commit and 

those with an aborted ancestor will abort. Being prepared to commit guarantees a subtransaction will be able 

to commit, whereas a provisional commit only means it has finished correctly – and will probably agree to 

commit when it is subsequently asked to 

. 

A coordinator for a subtransaction will provide an operation to open a subtransaction, together with an 

operation enabling that coordinator to enquire whether its parent has yet committed or aborted A client starts a 

set of nested transactions by opening a top-level transaction with an openTransaction operation, which returns 

a transaction identifier for the top-level transaction. The client starts a subtransaction by invoking the 

openSubTransaction operation, whose argument specifies its parent transaction. The new subtransaction 

automatically joins the parent transaction, and a transaction identifier for a subtransaction is returned. 

An identifier for a subtransaction must be an extension of its parent’s TID, constructed in such a way that the 

identifier of the parent or top-level transaction of a subtransaction can be determined from its own transaction 

identifier. In addition, all subtransaction identifiers should be globally unique. The client makes a set of 

nested transactions come to completion by invoking closeTransaction or abortTransaction on the coordinator 

of the top-level transaction. 

Meanwhile, each of the nested transactions carries out its operations. When they are finished, the server 

managing a subtransaction records information as to whether the subtransaction committed provisionally or 

aborted. Note that if its parent aborts, then the subtransaction will be forced to abort too. 

 



[DISTRIBUTED SYSTEMS] Page 69  

 
 

 

Concurrency control in distributed transactions 

 

Each server manages a set of objects and is responsible for ensuring that they remain consistent when 

accessed by concurrent transactions. Therefore, each server is responsible for applying concurrency control to 

its own objects 

 

Locking 

 

In a distributed transaction, the locks on an object are held locally (in the same server). The local lock 

manager can decide whether to grant a lock or make the requesting transaction wait. However, it cannot 

release any locks until it knows that the transaction has been committed or aborted at all the servers involved 

in the transaction. When locking is used for concurrency control, the objects remain locked and are 

unavailable for other transactions during the atomic commit protocol, although an aborted transaction releases 

its locks after phase 1 of the protocol. 

As lock managers in different servers set their locks independently of one another, it is possible that different 

servers may impose different orderings on transactions. When a deadlock is detected, a transaction is aborted 

to resolve the deadlock. In this case, the coordinator will be informed and will abort the transaction at the 

participants involved in the transaction. 

 

Timestamp ordering concurrency control 

 

In a single server transaction, the coordinator issues a unique timestamp to each transaction when it starts. 

Serial equivalence is enforced by committing the versions of objects in the order of the timestamps of 

transactions that accessed them. In distributed transactions, we require that each coordinator issue globally 

unique timestamps. A globally unique transaction timestamp is issued to the client by the first coordinator 

accessed by a transaction. The transaction timestamp is passed to the coordinator at each server whose objects 

perform an operation in the transaction. 

 

The servers of distributed transactions are jointly responsible for ensuring that they are performed in a serially 

equivalent manner. The same ordering of transactions can be achieved at all the servers even if their local 

clocks are not synchronized. However, for reasons of efficiency it is required that the timestamps issued by 

one coordinator be roughly synchronized with those issued by the other coordinators. When this is the case, 

the ordering of transactions generally corresponds to the order in which they are started in real time. 

 

 

 

 

 



[DISTRIBUTED SYSTEMS] Page 70  

 

 

 

If the resolution of a conflict requires a transaction to be aborted, the coordinator will be informed and it will 

abort the transaction at all the participants. Therefore any transaction that reaches the client request to commit 

should always be able to commit, and participants in the two-phase commit protocol will normally agree to 

commit. The only situation in which a participant will not agree to commit is if it has crashed during the 

transaction. 

 

Optimistic concurrency control 

 

In optimistic concurrency control, each transaction is validated before it is allowed to commit. Transaction 

numbers are assigned at the start of validation and transactions are serialized according to the order of the 

transaction numbers. A distributed transaction is validated by a collection of independent servers, each of 

which validates transactions that access its own objects. This validation takes place during the first phase of 

the two-phase commit protocol. 

 

If parallel validation is used, transactions will not suffer from commitment deadlock. However, if servers 

simply perform independent validations, it is possible that different servers in a distributed transaction may 

serialize the same set of transactions in different orders – for example, with T before U at server X and U 

before T at server Y, in our example. 

 

The servers of distributed transactions must prevent this happening. One approach is that after a local 

validation by each server, a global validation is carried out . The global validation checks that the combination 

of the orderings at the individual servers is serializable; that is, that the transaction being validated is not 

involved in a cycle. 

 

Another approach is that all of the servers of a particular transaction use the same globally unique transaction 

number at the start of the validation The coordinator of the two-phase commit protocol is responsible for 

generating the globally unique transaction number and passes it to the participants in the canCommit? 

messages. As different servers may coordinate different transactions, the servers must (as in the  distributed 

timestamp ordering protocol) have an agreed order for the transaction numbers they generate. 

 

Distributed deadlocks 

 

In a distributed system involving multiple servers being accessed by multiple transactions, a global wait-for 

graph can in theory be constructed from the local ones. There can be a cycle in the global wait-for graph that 

is not in any single local one – that is, there can be a distributed deadlock. Recall that the wait-for graph is a 

directed graph in which nodes represent transactions and objects, and edges represent either an object held by 

a transaction or a transaction waiting for an object. There is a deadlock if and only if there is a cycle in the 

wait-for graph. 

Detection of a distributed deadlock requires a cycle to be found in the global transaction wait-for graph that is 

distributed among the servers that were involved in the transactions. Local wait-for graphs can be built by the 

lock manager at each server  

As the global wait-for graph is held in part by each of the several servers involved, communication between 

these servers is required to find cycles in the graph. A simple solution is to use centralized deadlock detection, 

in which one server takes on the role of global deadlock detector. From time to time, each server sends the 

latest copy of its local wait-for graph to the global deadlock detector, which amalgamates the information in 

the local graphs in order to construct a global wait-for graph. The global deadlock detector checks for cycles 

in the global wait-for graph. 

When it finds a cycle, it makes a decision on how to resolve the deadlock and tells the servers which 

transaction to abort. 

 

 

 



[DISTRIBUTED SYSTEMS] Page 71  

 

 

Centralized deadlock detection is not a good idea, because it depends on a single server to carry it out. It 

suffers from the usual problems associated with centralized solutions in distributed systems – poor 

availability, lack of fault tolerance and no ability to scale. In addition, the cost of the frequent transmission of 

local wait-for graphs is high. If the global graph is collected less frequently, deadlocks may take longer to be 

detected. 

 

Phantom deadlocks • A deadlock that is ‘detected’ but is not really a deadlock is called a phantom deadlock. 

In distributed deadlock detection, information about wait-for relationships between transactions is transmitted 

from one server to another. If there is a deadlock, the necessary information will eventually be collected in 

one place and a cycle will be detected. 

 

Edge chasing • A distributed approach to deadlock detection uses a technique called edge chasing or path 

pushing. In this approach, the global wait-for graph is not constructed, but each of the servers involved has 

knowledge about some of its edges. 

The servers attempt to find cycles by forwarding messages called probes, which follow the edges of the graph 

throughout the distributed system. A probe message consists of transaction wait-for relationships representing 

a path in the global wait-for graph 

 

Edge-chasing algorithms have three steps: 

 

Initiation: When a server notes that a transaction T starts waiting for another transaction U, where U is 

waiting to access an object at another server, it initiates detection by sending a probe containing the edge < T 

� U > to the server of the 

object at which transaction U is blocked. If U is sharing a lock, probes are sent to all the holders of the lock. 

Sometimes further transactions may start sharing the lock later on, in which case probes can be sent to them 

too. 

 

Detection: Detection consists of receiving probes and deciding whether a deadlock 

has occurred and whether to forward the probes 

 

Resolution: When a cycle is detected, a transaction in the cycle is aborted to break 

the deadlock. 

 

Transaction recovery 

 

When a server is running it keeps all of its objects in its volatile memory and records its committed objects in 

a recovery file or files. Therefore recovery consists of restoring the server with the latest committed versions 

of its objects from permanent storage. Databases need to deal with large volumes of data. They generally hold 

the objects in stable storage on disk with a cache in volatile memory. 

The requirements for durability and failure atomicity are not really independent of one another and can be 

dealt with by a single mechanism – the recovery manager. 

The tasks of a recovery manager are: 

• to save objects in permanent storage (in a recovery file) for committed transactions; 

• to restore the server’s objects after a crash; 

• to reorganize the recovery file to improve the performance of recovery; 

• to reclaim storage space (in the recovery file). 

In some cases, we require the recovery manager to be resilient to media failures. Corruption during a crash, 

random decay or a permanent failure can lead to failures of the recovery file, which can result in some of the 

data on the disk being lost. In such cases we need another copy of the recovery file. Stable storage, which is 

implemented so as to be very unlikely to fail by using mirrored disks or copies at a different location may be 

used for this purpose. 

 

 



[DISTRIBUTED SYSTEMS] Page 72  

 

 

 

Intentions list • Any server that provides transactions needs to keep track of the objects accessed by clients’ 

transactions when a client opens a transaction, the server first contacted provides a new transaction identifier 

and 

returns it to the client. Each subsequent client request within a transaction up to and including the commit or 

abort request includes the transaction identifier as an argument. During the progress of a transaction, the 

update operations are applied to a private set of tentative versions of the objects belonging to the transaction  

 

At each server, an intentions list is recorded for all of its currently active transactions – an intentions list of a 

particular transaction contains a list of the references and the values of all the objects that are altered by that 

transaction. When a transaction is committed, that transaction’s intentions list is used to identify the objects it 

affected. 

 

The committed version of each object is replaced by the tentative version made by that transaction, and the 

new value is written to the server’s recovery file. When a transaction aborts, the server uses the intentions list 

to delete all the tentative versions of objects made by that transaction. At the point when a participant says it 

is prepared to commit a transaction, its recovery manager must have saved both its intentions list for that 

transaction and the objects in that intentions list in its recovery file, so that it will be able to carry out the 

commitment later, even if it crashes in the interim. 

 

When all the participants involved in a transaction agree to commit it, the coordinator informs the client and 

then sends messages to the participants to commit their part of the transaction. Once the client has been 

informed that a transaction has committed, the recovery files of the participating servers must contain 

sufficient information to ensure that the transaction is committed by all of the servers, even if some  of them 

crash between preparing to commit and committing. 

 

 

Entries in recovery file • To deal with recovery of a server that can be involved in distributed transactions, 

further information in addition to the values of the objects is stored in the recovery file. This information 

concerns the status of each transaction –whether it is committed, aborted or prepared to commit. In addition, 

each object in the recovery file is associated with a particular transaction by saving the intentions list in the 

recovery file 

 

 

Logging 

 

In the logging technique, the recovery file represents a log containing the history of all the transactions 

performed by a server. The history consists of values of objects, transaction status entries and transaction 

intentions lists. The order of the entries in the log reflects the order in which transactions have prepared, 

committed and aborted at that server. In practice, the recovery file will contain a recent snapshot of the values 

of all the objects in the server followed by a history of transactions postdating the snapshot.  

During the normal operation of a server, its recovery manager is called whenever a transaction prepares to 

commit, commits or aborts a transaction. When the server is prepared to commit a transaction, the recovery 

manager appends all the objects in its intentions list to the recovery file, followed by the current status of that 

transaction (prepared) together with its intentions list. When a transaction is eventually committed or aborted, 

the recovery manager appends the corresponding status of the transaction to its recovery file. If the server 

fails, only the last write can be incomplete.  

 

To make efficient use of the disk, several subsequent writes can be buffered and then written to disk as a 

single write. An additional advantage of the logging technique is that sequential writes to disk are faster than 

writes to random locations. 

 

 



[DISTRIBUTED SYSTEMS] Page 73  

 

 

 

 

After a crash, any transaction that does not have a committed status in the log is aborted. Therefore when a 

transaction commits, its committed status entry must be forced to the log – that is, written to the log together 

with any other buffered entries. The recovery manager associates a unique identifier with each object so that 

the successive versions of an object in the recovery file may be associated with the server’s objects. 

 

Recovery of objects • When a server is replaced after a crash, it first sets default initial values for its objects 

and then hands over to its recovery manager. The recovery manager is responsible for restoring the server’s 

objects so that they include all the effects of the committed transactions performed in the correct order and 

none of the effects of incomplete or aborted transactions. 

The most recent information about transactions is at the end of the log. There are two approaches to restoring 

the data from the recovery file. In the first, the recovery manager starts at the beginning and restores the 

values of all of the objects from the most recent checkpoint (discussed in the next section). It then reads in the 

values of each of the objects, associates them with their transaction’s intentions lists and for committed 

transactions replaces the values of the objects. In this approach, the transactions are replayed in the order in 

which they were executed and there could be a large number of them. In the second approach, the recovery 

manager will restore a server’s objects by‘reading the recovery file backwards’. 

 

Reorganizing the recovery file • A recovery manager is responsible for reorganizing its recovery file so as to 

make the process of recovery faster and to reduce its use of space. If the recovery file is never reorganized, 

then the recovery process must search backwards through the recovery file until it has found a value for each 

of its objects. 

 

Conceptually, the only information required for recovery is a copy of the committed version of each object in 

the server. This would be the most compact form for the recovery file. The name checkpointing is used to 

refer to the process of writing the current committed values of a server’s objects to a new recovery file, 

together with transaction status entries and intentions lists of transactions that have not yet been fully resolved 

(including information related to the two-phase commit protocol). The term checkpoint is used to refer to the 

information stored by the checkpointing process. The 

purpose of making checkpoints is to reduce the number of transactions to be dealt with during recovery and to 

reclaim file space. Checkpointing can be done immediately after recovery but before any new transactions are 

started. However, recovery may not occur very often. Therefore, checkpointing may need to be done from 

time to time during the normal activity of a server. The checkpoint is written to a future recovery file, and the 

current recovery file remains in use until the checkpoint is complete. Checkpointing consists of ‘adding a 

mark’ to the recovery file when the checkpointing starts, writing the server’s objects to the future recovery 

file and then copying to that file (1) all entries before the mark that 

relate to as-yet-unresolved transactions and (2) all entries after the mark in the recoveryfile. When the 

checkpoint is complete, the future recovery file becomes the recovery file. The recovery system can reduce its 

use of space by discarding the old recovery file. 

 

Shadow versions 

 

The logging technique records transaction status entries, intentions lists and objects all in the same file – the 

log. The shadow versions technique is an alternative way to organize a recovery file. It uses a map to locate 

versions of the server’s objects in a file called a version store. The map associates the identifiers of the 

server’s objects with the positions of their current versions in the version store. The versions written by each 

transaction are ‘shadows’ of the previous committed versions. As we shall see, the transaction status entries 

and intentions lists are stored separately. Shadow versions are described first. 

 

When a transaction is prepared to commit, any of the objects changed by the transaction are appended to the 

version store, leaving the corresponding committed versions unchanged. These new as-yet-tentative versions 

are called shadow versions. 



[DISTRIBUTED SYSTEMS] Page 74  

 When a transaction commits, a new map is made by copying the old map and entering the positions of the 

shadow versions.  

 

To complete the commit process, the new map replaces the old map. To restore the objects when a server is 

replaced after a crash, its recovery manager reads the map and uses the information in the map to locate the 

objects in the version store.  

 

The switch from the old map to the new map must be performed in a single atomic step. To achieve this it is 

essential that stable storage is used for the map, so that there is guaranteed to be a valid map even when a file 

write operation fails. The shadow versions method provides faster recovery than logging because the 

positions of the current committed objects are recorded in the map, whereas recovery from a log requires 

searching throughout the log for objects. Logging should be faster than shadow versions during the normal 

activity of the system, though. This is because logging requires only a sequence of append operations to the 

same file, whereas shadow versions require an additional stable storage write (involving two unrelated disk 

blocks). 

 

Shadow versions on their own are not sufficient for a server that handles distributed transactions. Transaction 

status entries and intentions lists are saved in a file called the transaction status file. Each intentions list 

represents the part of the map that will be altered by a transaction when it commits. The transaction status file 

may, for example, be organized as a log. 

 

There is a chance that a server may crash between the time when a committed status is written to the 

transaction status file and the time when the map is updated – in which case the client will not have been 

acknowledged. The recovery manager must allow for this possibility when the server is replaced after a crash, 

for example by checking whether the map includes the effects of the last committed transaction in the 

transaction status file. If it does not, then the latter should be marked as aborted. 

 

 

 

 

 

 

 

 

 


